Normalized defining polynomial
\( x^{16} - 5 x^{15} - 5 x^{14} + 20 x^{13} + 253 x^{12} - 818 x^{11} - 386 x^{10} + 2338 x^{9} - 6768 x^{8} + 40198 x^{7} - 78873 x^{6} + 42256 x^{5} - 137384 x^{4} + 304792 x^{3} - 147792 x^{2} - 1213216 x + 1017664 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81000012766225321509609765625=5^{8}\cdot 29^{10}\cdot 149^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{26} a^{11} - \frac{9}{26} a^{10} + \frac{11}{26} a^{9} + \frac{4}{13} a^{8} + \frac{3}{26} a^{7} + \frac{1}{13} a^{6} - \frac{2}{13} a^{5} - \frac{1}{13} a^{4} + \frac{4}{13} a^{3} + \frac{1}{26} a + \frac{4}{13}$, $\frac{1}{52} a^{12} - \frac{1}{52} a^{11} - \frac{9}{52} a^{10} - \frac{2}{13} a^{9} - \frac{11}{52} a^{8} - \frac{1}{2} a^{7} - \frac{7}{26} a^{6} + \frac{9}{26} a^{5} - \frac{2}{13} a^{4} - \frac{7}{26} a^{3} - \frac{25}{52} a^{2} + \frac{4}{13} a + \frac{3}{13}$, $\frac{1}{1352} a^{13} - \frac{1}{1352} a^{12} - \frac{1}{104} a^{11} - \frac{45}{338} a^{10} - \frac{263}{1352} a^{9} - \frac{263}{676} a^{8} + \frac{9}{52} a^{7} - \frac{307}{676} a^{6} - \frac{64}{169} a^{5} - \frac{185}{676} a^{4} + \frac{151}{1352} a^{3} + \frac{121}{338} a^{2} - \frac{11}{338} a - \frac{17}{169}$, $\frac{1}{67600} a^{14} - \frac{23}{67600} a^{13} - \frac{407}{67600} a^{12} + \frac{157}{33800} a^{11} + \frac{9313}{67600} a^{10} - \frac{2819}{16900} a^{9} + \frac{9387}{33800} a^{8} - \frac{489}{33800} a^{7} - \frac{4187}{16900} a^{6} - \frac{113}{520} a^{5} + \frac{6463}{13520} a^{4} + \frac{2013}{33800} a^{3} + \frac{8377}{16900} a^{2} + \frac{33}{650} a - \frac{1581}{4225}$, $\frac{1}{2765285062689262595774446011486522400} a^{15} - \frac{3549327824028352068658410258469}{553057012537852519154889202297304480} a^{14} + \frac{271724625771078224368808336786599}{2765285062689262595774446011486522400} a^{13} + \frac{3096238221378888554414332022631321}{345660632836157824471805751435815300} a^{12} - \frac{1067426179576114135500863249923399}{553057012537852519154889202297304480} a^{11} + \frac{381937679069191351412385756304934769}{1382642531344631297887223005743261200} a^{10} + \frac{610653895494031180888787086515745423}{1382642531344631297887223005743261200} a^{9} - \frac{508710244363905486501733676832651703}{1382642531344631297887223005743261200} a^{8} - \frac{113281054727445625332293086840499229}{345660632836157824471805751435815300} a^{7} - \frac{232005336772253096832046912878787117}{1382642531344631297887223005743261200} a^{6} + \frac{90455390496578992277218360506481619}{553057012537852519154889202297304480} a^{5} + \frac{36752664985303345798794647078911149}{691321265672315648943611502871630600} a^{4} + \frac{7688609328306084799718731960860723}{86415158209039456117951437858953825} a^{3} + \frac{33244112289902066904662938940957108}{86415158209039456117951437858953825} a^{2} - \frac{902624006824095371933407999029820}{3456606328361578244718057514358153} a - \frac{14206779266163137996716392725986984}{86415158209039456117951437858953825}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91960024.8377 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1439 are not computed |
| Character table for t16n1439 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 8.4.65865543125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $149$ | 149.2.1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |