Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 120 x^{13} + 266 x^{12} - 356 x^{11} + 184 x^{10} + 428 x^{9} - 257 x^{8} - 3428 x^{7} + 8420 x^{6} - 8468 x^{5} + 3652 x^{4} - 636 x^{3} - 1760 x^{2} + 1748 x - 361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(760879655786905600000000=2^{40}\cdot 5^{8}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{5}{11} a^{11} + \frac{3}{11} a^{10} + \frac{5}{11} a^{9} + \frac{1}{11} a^{8} - \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{4}{11} a^{5} - \frac{2}{11} a^{4} - \frac{3}{11} a^{3} + \frac{3}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{10} - \frac{2}{11} a^{9} + \frac{1}{11} a^{8} + \frac{5}{11} a^{7} + \frac{5}{11} a^{6} - \frac{4}{11} a^{4} + \frac{4}{11} a^{3} + \frac{3}{11} a^{2} - \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{55} a^{14} - \frac{1}{55} a^{12} + \frac{7}{55} a^{11} - \frac{27}{55} a^{10} - \frac{4}{55} a^{9} + \frac{4}{55} a^{8} - \frac{1}{55} a^{7} - \frac{24}{55} a^{6} - \frac{19}{55} a^{5} + \frac{17}{55} a^{4} + \frac{17}{55} a^{3} - \frac{24}{55} a^{2} + \frac{4}{11} a + \frac{9}{55}$, $\frac{1}{32116213727653675355468755} a^{15} - \frac{162673426880001149120686}{32116213727653675355468755} a^{14} - \frac{961091226816320849505831}{32116213727653675355468755} a^{13} + \frac{263743822696574500141088}{32116213727653675355468755} a^{12} - \frac{17751483198503480954529}{58287139251640064166005} a^{11} + \frac{6968671420356251765500943}{32116213727653675355468755} a^{10} - \frac{4414531956708513702843197}{32116213727653675355468755} a^{9} - \frac{2403453187194669788866821}{6423242745530735071093751} a^{8} + \frac{325819718108211677736813}{1107455645781161219154095} a^{7} + \frac{1498487603418088210621257}{6423242745530735071093751} a^{6} + \frac{7370251306773915214425046}{32116213727653675355468755} a^{5} - \frac{41341916972032032923880}{6423242745530735071093751} a^{4} + \frac{12695671961084315068978664}{32116213727653675355468755} a^{3} - \frac{1998758492745285256589301}{32116213727653675355468755} a^{2} - \frac{1953403151110469605675056}{32116213727653675355468755} a + \frac{806603725902788506254064}{1690327038297561860814145}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 525091.187748 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T486):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1600.1, 4.4.4400.1, 4.2.17600.2, 8.4.4956160000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |