Normalized defining polynomial
\( x^{16} - 3 x^{15} + 4 x^{14} + 45 x^{13} - 42 x^{12} - 256 x^{11} + 161 x^{10} + 541 x^{9} - 2932 x^{8} - 3270 x^{7} + 8161 x^{6} + 18493 x^{5} + 6552 x^{4} + 2957 x^{3} - 4011 x^{2} - 10083 x + 10331 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7561037361641682928770951437=13^{8}\cdot 53^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{9} a^{12} - \frac{1}{3} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{2}{9}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{9} a^{10} + \frac{11}{27} a^{9} - \frac{4}{9} a^{8} - \frac{5}{27} a^{7} + \frac{5}{27} a^{6} + \frac{1}{27} a^{5} - \frac{13}{27} a^{4} - \frac{1}{27} a^{3} - \frac{10}{27} a^{2} + \frac{2}{27} a - \frac{2}{27}$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{12} - \frac{1}{9} a^{11} - \frac{1}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{27} a^{8} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{13}{27} a^{4} + \frac{7}{27} a^{3} - \frac{8}{27} a^{2} - \frac{11}{27}$, $\frac{1}{232721028914313700396980594117} a^{15} - \frac{3412445462192134763567413921}{232721028914313700396980594117} a^{14} - \frac{1001676956370713977452567271}{232721028914313700396980594117} a^{13} - \frac{1286815216390722023610839294}{33245861273473385770997227731} a^{12} - \frac{5102644819268986584114858625}{33245861273473385770997227731} a^{11} + \frac{361376534296552514278811159}{2873099122398934572802229557} a^{10} - \frac{70988977120707821238491251657}{232721028914313700396980594117} a^{9} + \frac{13013932278099980379481971188}{33245861273473385770997227731} a^{8} + \frac{153442398693283986971514682}{8619297367196803718406688671} a^{7} - \frac{2158891591663182063716651065}{77573676304771233465660198039} a^{6} + \frac{71574858473780143720241388757}{232721028914313700396980594117} a^{5} + \frac{3347469848115178713493639973}{25857892101590411155220066013} a^{4} + \frac{156370887984846105406162394}{2873099122398934572802229557} a^{3} + \frac{3338086614311503815804735617}{33245861273473385770997227731} a^{2} + \frac{2911185735075430553982798034}{33245861273473385770997227731} a - \frac{61132061328284472241746893845}{232721028914313700396980594117}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50253405.9096 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.4.36517.1, 8.4.11944081475573.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53 | Data not computed | ||||||