Normalized defining polynomial
\( x^{16} - x^{15} + 9 x^{14} - 38 x^{13} + 46 x^{12} + 90 x^{11} - 414 x^{10} - 1054 x^{9} - 3197 x^{8} + 3656 x^{7} + 16722 x^{6} + 15527 x^{5} - 1681 x^{4} - 7475 x^{3} - 1443 x^{2} + 1690 x + 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7561037361641682928770951437=13^{8}\cdot 53^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{13} a^{10} - \frac{5}{13} a^{9} + \frac{2}{13} a^{8} + \frac{4}{13} a^{7} - \frac{1}{13} a^{6} + \frac{6}{13} a^{5} + \frac{5}{13} a^{4} - \frac{3}{13} a^{3} + \frac{4}{13} a^{2}$, $\frac{1}{13} a^{11} + \frac{3}{13} a^{9} + \frac{1}{13} a^{8} + \frac{6}{13} a^{7} + \frac{1}{13} a^{6} - \frac{4}{13} a^{5} - \frac{4}{13} a^{4} + \frac{2}{13} a^{3} - \frac{6}{13} a^{2}$, $\frac{1}{13} a^{12} + \frac{3}{13} a^{9} + \frac{2}{13} a^{7} - \frac{1}{13} a^{6} + \frac{4}{13} a^{5} + \frac{3}{13} a^{3} + \frac{1}{13} a^{2}$, $\frac{1}{13} a^{13} + \frac{2}{13} a^{9} - \frac{4}{13} a^{8} - \frac{6}{13} a^{6} - \frac{5}{13} a^{5} + \frac{1}{13} a^{4} - \frac{3}{13} a^{3} + \frac{1}{13} a^{2}$, $\frac{1}{1183} a^{14} + \frac{38}{1183} a^{13} - \frac{4}{1183} a^{12} - \frac{38}{1183} a^{11} - \frac{6}{1183} a^{10} - \frac{300}{1183} a^{9} - \frac{323}{1183} a^{8} - \frac{40}{1183} a^{7} + \frac{28}{169} a^{6} + \frac{29}{1183} a^{5} - \frac{256}{1183} a^{4} - \frac{229}{1183} a^{3} + \frac{282}{1183} a^{2} - \frac{8}{91} a - \frac{23}{91}$, $\frac{1}{1727922543246610682074103} a^{15} + \frac{352563605416538112801}{1727922543246610682074103} a^{14} + \frac{61852385723757778348679}{1727922543246610682074103} a^{13} - \frac{425528859440835855344}{12083374428297976797721} a^{12} + \frac{51095270960024813122}{35263725372379809838247} a^{11} - \frac{26134361068578923384428}{1727922543246610682074103} a^{10} + \frac{128094106762382617868666}{1727922543246610682074103} a^{9} - \frac{59632193647603656599393}{157083867567873698370373} a^{8} - \frac{518802028997988415787818}{1727922543246610682074103} a^{7} - \frac{20451424612498837595996}{132917118711277744774931} a^{6} + \frac{155449238163492565865854}{1727922543246610682074103} a^{5} - \frac{535851443750945646666206}{1727922543246610682074103} a^{4} + \frac{169284104418719728212717}{1727922543246610682074103} a^{3} - \frac{81478226044619041781027}{1727922543246610682074103} a^{2} - \frac{2561577870297134584725}{18988159815896820682133} a - \frac{49134000798720333493266}{132917118711277744774931}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66214254.4391 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.4.36517.1, 8.4.11944081475573.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53 | Data not computed | ||||||