Normalized defining polynomial
\( x^{16} - 3 x^{15} - 18 x^{13} + 110 x^{12} - 174 x^{11} - 532 x^{10} + 2830 x^{9} - 5446 x^{8} + 8838 x^{7} - 15512 x^{6} + 22642 x^{5} - 26571 x^{4} + 13468 x^{3} + 3874 x^{2} + 507 x + 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7561037361641682928770951437=13^{8}\cdot 53^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{1}{13} a^{10} - \frac{2}{13} a^{9} + \frac{1}{13} a^{8} - \frac{4}{13} a^{7} + \frac{3}{13} a^{6} + \frac{1}{13} a^{5} - \frac{6}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{13} + \frac{1}{13} a^{11} - \frac{2}{13} a^{10} + \frac{1}{13} a^{9} - \frac{4}{13} a^{8} + \frac{3}{13} a^{7} + \frac{1}{13} a^{6} - \frac{6}{13} a^{5} - \frac{6}{13} a^{4} - \frac{1}{13} a^{3}$, $\frac{1}{39} a^{14} - \frac{1}{39} a^{13} - \frac{1}{39} a^{12} - \frac{1}{13} a^{11} + \frac{1}{39} a^{10} - \frac{1}{39} a^{9} - \frac{8}{39} a^{8} - \frac{7}{39} a^{7} + \frac{1}{3} a^{6} - \frac{2}{39} a^{5} + \frac{4}{39} a^{4} + \frac{1}{3} a^{3} + \frac{5}{13} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{55081247622671903375469102519} a^{15} - \frac{163049729193657317781988835}{55081247622671903375469102519} a^{14} - \frac{126789832663823337637246945}{18360415874223967791823034173} a^{13} + \frac{52947362863312834982427749}{5007386147515627579588100229} a^{12} - \frac{1427722176591244094719021867}{5007386147515627579588100229} a^{11} + \frac{24122678688202090574488188907}{55081247622671903375469102519} a^{10} + \frac{417631304778177692166173317}{5007386147515627579588100229} a^{9} + \frac{17171540235204449133286062412}{55081247622671903375469102519} a^{8} + \frac{10563282037937074365774053006}{55081247622671903375469102519} a^{7} + \frac{128948959326503629239941066}{1412339682632612907063310321} a^{6} + \frac{482726888154752120715649870}{1412339682632612907063310321} a^{5} + \frac{7438078443880331143584737245}{18360415874223967791823034173} a^{4} + \frac{10772134253391843893505979412}{55081247622671903375469102519} a^{3} - \frac{2424126161210563056209893204}{55081247622671903375469102519} a^{2} - \frac{355285052504218715157897137}{1412339682632612907063310321} a + \frac{1100934330761725529191388188}{4237019047897838721189930963}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46843154.1664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.4.36517.1, 8.4.11944081475573.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53 | Data not computed | ||||||