Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 8 x^{13} - 42 x^{12} + 184 x^{11} - 28 x^{10} - 2056 x^{9} - 1043 x^{8} + 5104 x^{7} + 8088 x^{6} - 5760 x^{5} - 13748 x^{4} + 1008 x^{3} + 8736 x^{2} + 800 x - 862 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(751923235065182967870521344=2^{62}\cdot 113^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{119} a^{14} - \frac{30}{119} a^{13} - \frac{3}{119} a^{12} - \frac{39}{119} a^{11} + \frac{9}{119} a^{10} - \frac{33}{119} a^{9} + \frac{25}{119} a^{8} - \frac{59}{119} a^{7} - \frac{41}{119} a^{6} + \frac{12}{119} a^{5} + \frac{8}{119} a^{4} + \frac{29}{119} a^{3} + \frac{23}{119} a^{2} - \frac{27}{119} a + \frac{47}{119}$, $\frac{1}{567929520214568031530730501719} a^{15} - \frac{1765630391010251017286004118}{567929520214568031530730501719} a^{14} + \frac{130029339789111273634572541248}{567929520214568031530730501719} a^{13} + \frac{9565003936299465757199850233}{81132788602081147361532928817} a^{12} + \frac{86360409194681473586158993917}{567929520214568031530730501719} a^{11} - \frac{70361115795507011044829264}{998118664700471057171758351} a^{10} - \frac{42002064520414946026796319863}{567929520214568031530730501719} a^{9} + \frac{93399504463040055071651073656}{567929520214568031530730501719} a^{8} + \frac{204494116151299286853763338807}{567929520214568031530730501719} a^{7} - \frac{202425682038719962348333803416}{567929520214568031530730501719} a^{6} + \frac{159440558074823349512465864523}{567929520214568031530730501719} a^{5} - \frac{58002702351068460060205863311}{567929520214568031530730501719} a^{4} - \frac{30293592837147273453178462702}{567929520214568031530730501719} a^{3} - \frac{19043805801880633744796597454}{567929520214568031530730501719} a^{2} + \frac{277633821698832453841496249305}{567929520214568031530730501719} a + \frac{214086994281357171467687118650}{567929520214568031530730501719}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28665258.3528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.242665652224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.17 | $x^{8} + 16 x^{5} + 12 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8:C_2$ | $[2, 3, 4, 5]$ |
| 2.8.31.17 | $x^{8} + 16 x^{5} + 12 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8:C_2$ | $[2, 3, 4, 5]$ | |
| 113 | Data not computed | ||||||