Normalized defining polynomial
\( x^{16} - x^{15} + 133 x^{14} - 176 x^{13} + 6360 x^{12} - 11770 x^{11} + 141519 x^{10} - 318503 x^{9} + 1555186 x^{8} - 3095661 x^{7} + 7622467 x^{6} - 7707622 x^{5} - 28643128 x^{4} - 7357000 x^{3} - 67021671 x^{2} + 59114093 x + 153465661 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75014108983158875161309828004416=2^{6}\cdot 97^{4}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{3}{16} a^{2} + \frac{1}{16} a - \frac{5}{16}$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{9} + \frac{1}{48} a^{8} + \frac{1}{48} a^{7} - \frac{1}{8} a^{6} + \frac{1}{24} a^{5} + \frac{11}{48} a^{4} - \frac{1}{48} a^{3} + \frac{3}{16} a^{2} + \frac{23}{48} a - \frac{1}{6}$, $\frac{1}{48} a^{11} + \frac{1}{24} a^{8} - \frac{5}{48} a^{7} - \frac{1}{12} a^{6} + \frac{1}{48} a^{5} + \frac{5}{24} a^{4} + \frac{5}{12} a^{3} - \frac{1}{12} a^{2} - \frac{3}{16} a + \frac{1}{12}$, $\frac{1}{288} a^{12} - \frac{1}{288} a^{11} - \frac{1}{288} a^{10} - \frac{1}{48} a^{9} - \frac{11}{288} a^{8} - \frac{11}{96} a^{7} + \frac{13}{144} a^{6} + \frac{25}{288} a^{5} - \frac{55}{288} a^{4} + \frac{23}{144} a^{3} - \frac{5}{288} a^{2} + \frac{65}{288} a + \frac{13}{288}$, $\frac{1}{576} a^{13} - \frac{1}{288} a^{11} + \frac{5}{576} a^{10} + \frac{7}{576} a^{9} + \frac{1}{144} a^{8} - \frac{31}{576} a^{7} - \frac{19}{192} a^{6} + \frac{11}{96} a^{5} + \frac{41}{192} a^{4} - \frac{79}{576} a^{3} - \frac{7}{48} a^{2} - \frac{31}{96} a + \frac{169}{576}$, $\frac{1}{58752} a^{14} - \frac{19}{58752} a^{13} - \frac{7}{9792} a^{12} + \frac{611}{58752} a^{11} - \frac{5}{4896} a^{10} + \frac{77}{19584} a^{9} + \frac{77}{6528} a^{8} - \frac{1217}{14688} a^{7} + \frac{1777}{58752} a^{6} + \frac{4781}{58752} a^{5} - \frac{217}{1632} a^{4} + \frac{563}{19584} a^{3} + \frac{8929}{29376} a^{2} + \frac{4103}{58752} a + \frac{17665}{58752}$, $\frac{1}{94274852115188258319129262054043895296954519040} a^{15} - \frac{285101520632013545459525719565329590042167}{47137426057594129159564631027021947648477259520} a^{14} - \frac{53785184723283522874176529239957405354355}{369705302412502973800506910015858412929233408} a^{13} - \frac{80841277342445993755678917266586376607171791}{94274852115188258319129262054043895296954519040} a^{12} - \frac{261071960171945371993488707545759328447725799}{31424950705062752773043087351347965098984839680} a^{11} + \frac{35628802340533620241528444734965153058645877}{31424950705062752773043087351347965098984839680} a^{10} - \frac{2480425499408430397284351277250272999896763}{872915297362854243695641315315221252749578880} a^{9} - \frac{3012797727629728012353036411226333731390816011}{94274852115188258319129262054043895296954519040} a^{8} + \frac{11141541243019942272197225978666304024166246489}{94274852115188258319129262054043895296954519040} a^{7} - \frac{1162876654204842648123238931213705459171861609}{47137426057594129159564631027021947648477259520} a^{6} - \frac{3429229852007613668445156144705635887323035593}{31424950705062752773043087351347965098984839680} a^{5} - \frac{1502093760710639336593677669507508000804959265}{6284990141012550554608617470269593019796967936} a^{4} - \frac{43372863388593162063431957185793584480156945333}{94274852115188258319129262054043895296954519040} a^{3} - \frac{11463848811093964890721190844414687851591022271}{94274852115188258319129262054043895296954519040} a^{2} - \frac{9392403813279345202955916800377481529981407657}{23568713028797064579782315513510973824238629760} a + \frac{1435111236290700660630245381793650786779976011}{3491661189451416974782565261260885010998315520}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10116274719.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 69 conjugacy class representatives for t16n1656 are not computed |
| Character table for t16n1656 is not computed |
Intermediate fields
| 4.4.26569.1, 8.4.5647294088.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97 | Data not computed | ||||||
| $163$ | $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 163.12.10.1 | $x^{12} + 266994 x^{6} + 47068604209$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |