Normalized defining polynomial
\( x^{16} - 2 x^{15} + 98 x^{14} - 219 x^{13} + 3404 x^{12} - 4965 x^{11} + 47601 x^{10} - 19767 x^{9} + 244397 x^{8} + 244297 x^{7} - 77665 x^{6} + 2192657 x^{5} - 4093277 x^{4} + 5911629 x^{3} + 13239578 x^{2} - 17101737 x + 4505283 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73930914322948009059130451759201=89^{5}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2119} a^{14} + \frac{869}{2119} a^{13} - \frac{270}{2119} a^{12} + \frac{842}{2119} a^{11} - \frac{846}{2119} a^{10} + \frac{63}{163} a^{9} + \frac{246}{2119} a^{8} - \frac{488}{2119} a^{7} - \frac{571}{2119} a^{6} + \frac{289}{2119} a^{5} + \frac{851}{2119} a^{4} - \frac{60}{163} a^{3} - \frac{368}{2119} a^{2} + \frac{308}{2119} a - \frac{451}{2119}$, $\frac{1}{6994532871691875396749265450165537338414714356108959} a^{15} + \frac{757595463738551800089631312685970797695576088116}{6994532871691875396749265450165537338414714356108959} a^{14} + \frac{125467695968471610682451986846012066041084933299198}{6994532871691875396749265450165537338414714356108959} a^{13} + \frac{16088833022502133185623154925862579080689194019563}{179346996710048087096135011542706085600377291182281} a^{12} - \frac{353296997465648540802004036091261778364729751985928}{6994532871691875396749265450165537338414714356108959} a^{11} + \frac{19137589238372584475068808132323408298669135148042}{137147703366507360720573832356187006635582634433509} a^{10} - \frac{1150257228178634239030523340985160489525435062904552}{2331510957230625132249755150055179112804904785369653} a^{9} - \frac{843270134047262076768514757339841016260662763154395}{2331510957230625132249755150055179112804904785369653} a^{8} - \frac{475618924892990346811744272435051512633667693576922}{6994532871691875396749265450165537338414714356108959} a^{7} - \frac{128016349901774606360246468137727074116005980326748}{411443110099522082161721497068561019906747903300527} a^{6} + \frac{2221155805249044888244020441675144304421768213396621}{6994532871691875396749265450165537338414714356108959} a^{5} + \frac{3438691498946035352920449145493889529738491620803532}{6994532871691875396749265450165537338414714356108959} a^{4} - \frac{621799398020793185773809330256419936508493159482724}{6994532871691875396749265450165537338414714356108959} a^{3} + \frac{85992561352997369388443126450690905114697732790219}{2331510957230625132249755150055179112804904785369653} a^{2} - \frac{77607959187894230814281562385893568148889267374659}{538040990130144261288405034628118256801131873546843} a - \frac{483923661002119206059334520690709510431600431772627}{2331510957230625132249755150055179112804904785369653}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2487827864.96 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 48 conjugacy class representatives for t16n1518 |
| Character table for t16n1518 is not computed |
Intermediate fields
| 4.4.26569.1, 8.8.62826146729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89 | Data not computed | ||||||
| 163 | Data not computed | ||||||