Normalized defining polynomial
\( x^{16} - 8 x^{14} + 12 x^{12} + 8 x^{10} - 34 x^{8} + 8 x^{6} + 12 x^{4} - 8 x^{2} + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73786976294838206464=2^{66}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{12} a^{3} - \frac{5}{12} a^{2} + \frac{1}{4} a - \frac{5}{12}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{8} - \frac{1}{6} a^{6} + \frac{5}{12} a^{4} + \frac{1}{6} a^{2} - \frac{1}{12}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{9} - \frac{1}{6} a^{7} + \frac{5}{12} a^{5} + \frac{1}{6} a^{3} - \frac{1}{12} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{10} - \frac{1}{4} a^{6} - \frac{1}{6} a^{4} + \frac{1}{4} a^{2} + \frac{1}{6}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{5}{12} a^{2} - \frac{1}{12} a - \frac{5}{12}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6379.76160984 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.2.2048.1, 4.2.1024.1, 8.2.2147483648.2, 8.2.2147483648.1, 8.4.67108864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||