Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{13} - 11 x^{12} + 26 x^{11} + 48 x^{10} + 70 x^{9} + 89 x^{8} - 140 x^{7} - 292 x^{6} + 24 x^{5} - 336 x^{4} + 680 x^{3} - 40 x^{2} - 416 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(71411348623593088000000000=2^{16}\cdot 5^{9}\cdot 11^{7}\cdot 31^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{3}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{10} a^{3} - \frac{3}{10} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} - \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{3}{10} a^{3} - \frac{1}{2} a^{2} + \frac{2}{5} a$, $\frac{1}{20} a^{12} + \frac{1}{5} a^{9} - \frac{3}{20} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{4} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{100} a^{13} - \frac{1}{50} a^{12} + \frac{1}{50} a^{11} + \frac{3}{20} a^{9} + \frac{11}{50} a^{8} + \frac{1}{50} a^{7} - \frac{6}{25} a^{6} - \frac{31}{100} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3} + \frac{4}{25} a^{2} - \frac{1}{25} a - \frac{3}{25}$, $\frac{1}{3800} a^{14} + \frac{1}{475} a^{13} + \frac{1}{1900} a^{12} - \frac{11}{380} a^{11} - \frac{3}{152} a^{10} - \frac{169}{1900} a^{9} - \frac{189}{1900} a^{8} + \frac{353}{1900} a^{7} + \frac{849}{3800} a^{6} - \frac{1}{2} a^{5} + \frac{31}{380} a^{4} - \frac{261}{950} a^{3} - \frac{241}{950} a^{2} - \frac{11}{25} a - \frac{8}{95}$, $\frac{1}{8915752876600} a^{15} - \frac{125250847}{1114469109575} a^{14} - \frac{10955444437}{2228938219150} a^{13} + \frac{83813840249}{4457876438300} a^{12} + \frac{378079554089}{8915752876600} a^{11} - \frac{68897273329}{4457876438300} a^{10} - \frac{328417988009}{2228938219150} a^{9} - \frac{810358736629}{4457876438300} a^{8} - \frac{1076983387511}{8915752876600} a^{7} - \frac{528200974971}{2228938219150} a^{6} - \frac{502638135783}{2228938219150} a^{5} + \frac{568045200039}{2228938219150} a^{4} + \frac{118189821219}{1114469109575} a^{3} + \frac{417688105919}{2228938219150} a^{2} - \frac{73029375031}{222893821915} a - \frac{263692349313}{1114469109575}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15535260.0958 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 130 conjugacy class representatives for t16n1782 are not computed |
| Character table for t16n1782 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.8525.1, 8.4.204654560000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.9 | $x^{8} + 6 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.8.9 | $x^{8} + 6 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31 | Data not computed | ||||||