Normalized defining polynomial
\( x^{16} - 122 x^{12} + 448 x^{10} + 3031 x^{8} - 9328 x^{6} - 34034 x^{4} - 17160 x^{2} + 1705 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(71411348623593088000000000=2^{16}\cdot 5^{9}\cdot 11^{7}\cdot 31^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{5}{16} a^{2} - \frac{5}{16} a + \frac{1}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{3}{16} a^{4} + \frac{5}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{5}{16}$, $\frac{1}{96} a^{12} + \frac{1}{96} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{7}{96} a^{6} + \frac{1}{16} a^{5} + \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{11}{96} a^{2} + \frac{7}{16} a + \frac{29}{96}$, $\frac{1}{96} a^{13} + \frac{1}{96} a^{11} - \frac{1}{16} a^{8} + \frac{5}{96} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} - \frac{47}{96} a^{3} + \frac{3}{8} a^{2} + \frac{11}{96} a + \frac{3}{16}$, $\frac{1}{5689059782496} a^{14} + \frac{22573133659}{5689059782496} a^{12} - \frac{6515678019}{474088315208} a^{10} + \frac{321925954871}{5689059782496} a^{8} - \frac{8363821231}{474088315208} a^{6} - \frac{1}{4} a^{5} - \frac{382687445273}{5689059782496} a^{4} + \frac{1}{4} a^{3} - \frac{602934778429}{5689059782496} a^{2} - \frac{1}{4} a + \frac{93970734129}{474088315208}$, $\frac{1}{5689059782496} a^{15} + \frac{22573133659}{5689059782496} a^{13} - \frac{6515678019}{474088315208} a^{11} + \frac{321925954871}{5689059782496} a^{9} - \frac{8363821231}{474088315208} a^{7} + \frac{1039577500351}{5689059782496} a^{5} - \frac{1}{4} a^{4} + \frac{819330167195}{5689059782496} a^{3} - \frac{1}{4} a^{2} - \frac{24551344673}{474088315208} a - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7062127.85852 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 130 conjugacy class representatives for t16n1782 are not computed |
| Character table for t16n1782 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.8525.1, 8.6.204654560000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.8.7.2 | $x^{8} - 11$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 31 | Data not computed | ||||||