Normalized defining polynomial
\( x^{16} - 8 x^{15} + 18 x^{14} - 16 x^{13} - 574 x^{12} + 1908 x^{11} - 8750 x^{10} + 8368 x^{9} - 23691 x^{8} - 53780 x^{7} + 145636 x^{6} - 567384 x^{5} + 1805012 x^{4} - 3126928 x^{3} + 6378576 x^{2} - 4249952 x + 4748368 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(69979484620810119540570587136=2^{24}\cdot 3^{14}\cdot 11^{8}\cdot 2017^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 2017$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{24} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} + \frac{1}{24} a^{4} + \frac{1}{4} a^{3} + \frac{1}{12} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{24} a^{13} - \frac{1}{12} a^{9} - \frac{1}{4} a^{7} + \frac{3}{8} a^{5} - \frac{1}{3} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{145392} a^{14} - \frac{79}{12116} a^{13} - \frac{397}{36348} a^{12} - \frac{502}{9087} a^{11} + \frac{905}{24232} a^{10} - \frac{2075}{36348} a^{9} + \frac{1519}{72696} a^{8} + \frac{137}{18174} a^{7} - \frac{19639}{145392} a^{6} - \frac{2869}{9087} a^{5} - \frac{24725}{72696} a^{4} + \frac{209}{3029} a^{3} - \frac{917}{36348} a^{2} - \frac{1663}{18174} a - \frac{844}{3029}$, $\frac{1}{28017993875891076011476670957793311013648} a^{15} - \frac{3045966742806496800497024866844959}{3113110430654564001275185661977034557072} a^{14} - \frac{9373324524313631363179581287410560113}{1556555215327282000637592830988517278536} a^{13} + \frac{16025674885386996482390778709484976931}{14008996937945538005738335478896655506824} a^{12} - \frac{184268341730766774171400185618054363613}{4669665645981846001912778492965551835608} a^{11} + \frac{185886280115068239649453243711519465003}{4669665645981846001912778492965551835608} a^{10} - \frac{575248095731377076810145483585586894045}{14008996937945538005738335478896655506824} a^{9} - \frac{36214336111447920367964488020812563949}{4669665645981846001912778492965551835608} a^{8} - \frac{508790538407941980991623082140800750617}{9339331291963692003825556985931103671216} a^{7} + \frac{430574679247711035814874351755851226597}{2155230298145467385498205458291793154896} a^{6} + \frac{351047436529823189322706885957047377443}{2334832822990923000956389246482775917804} a^{5} + \frac{90577017930924217596719202621103875586}{583708205747730750239097311620693979451} a^{4} + \frac{1997403088169359797105878427232745680955}{7004498468972769002869167739448327753412} a^{3} - \frac{115284802133475516095487386560913796521}{389138803831820500159398207747129319634} a^{2} + \frac{299387186309978990271063112941172746977}{1167416411495461500478194623241387958902} a + \frac{1548124419519703457603359033950626699237}{3502249234486384501434583869724163876706}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60049258.9118 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n984 |
| Character table for t16n984 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{11}) \), 4.4.4752.1 x2, 4.4.13068.1 x2, \(\Q(\sqrt{3}, \sqrt{11})\), 8.8.2732361984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.8.16.5 | $x^{8} + 4 x^{6} + 40 x^{2} + 4$ | $4$ | $2$ | $16$ | $D_4$ | $[2, 3]^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 2017 | Data not computed | ||||||