Normalized defining polynomial
\( x^{16} - x^{15} - 2 x^{14} - 4 x^{13} - 5 x^{12} - x^{11} + 6 x^{10} + 13 x^{9} + 15 x^{8} + 13 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(683032622823828125\) \(\medspace = 5^{8}\cdot 29\cdot 31^{2}\cdot 89^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(13.02\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}29^{1/2}31^{1/2}89^{1/2}\approx 632.4990118569357$ | ||
Ramified primes: | \(5\), \(29\), \(31\), \(89\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{29}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{157}a^{14}+\frac{52}{157}a^{13}-\frac{73}{157}a^{12}+\frac{68}{157}a^{10}-\frac{8}{157}a^{9}-\frac{15}{157}a^{8}+\frac{11}{157}a^{7}-\frac{15}{157}a^{6}-\frac{8}{157}a^{5}+\frac{68}{157}a^{4}-\frac{73}{157}a^{2}+\frac{52}{157}a+\frac{1}{157}$, $\frac{1}{157}a^{15}+\frac{49}{157}a^{13}+\frac{28}{157}a^{12}+\frac{68}{157}a^{11}+\frac{67}{157}a^{10}-\frac{70}{157}a^{9}+\frac{6}{157}a^{8}+\frac{41}{157}a^{7}-\frac{13}{157}a^{6}+\frac{13}{157}a^{5}+\frac{75}{157}a^{4}-\frac{73}{157}a^{3}-\frac{77}{157}a^{2}-\frac{34}{157}a-\frac{52}{157}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{56}{157}a^{15}+\frac{8}{157}a^{14}-\frac{137}{157}a^{13}-\frac{429}{157}a^{12}-\frac{588}{157}a^{11}-\frac{414}{157}a^{10}+\frac{255}{157}a^{9}+\frac{1158}{157}a^{8}+\frac{1913}{157}a^{7}+\frac{1821}{157}a^{6}+\frac{1135}{157}a^{5}+\frac{348}{157}a^{4}-\frac{320}{157}a^{3}-\frac{500}{157}a^{2}-\frac{232}{157}a+\frac{79}{157}$, $a$, $\frac{56}{157}a^{15}+\frac{8}{157}a^{14}-\frac{137}{157}a^{13}-\frac{429}{157}a^{12}-\frac{588}{157}a^{11}-\frac{414}{157}a^{10}+\frac{255}{157}a^{9}+\frac{1158}{157}a^{8}+\frac{1913}{157}a^{7}+\frac{1821}{157}a^{6}+\frac{1135}{157}a^{5}+\frac{348}{157}a^{4}-\frac{320}{157}a^{3}-\frac{500}{157}a^{2}-\frac{232}{157}a-\frac{78}{157}$, $\frac{23}{157}a^{15}+\frac{61}{157}a^{14}-\frac{97}{157}a^{13}-\frac{355}{157}a^{12}-\frac{477}{157}a^{11}-\frac{434}{157}a^{10}+\frac{257}{157}a^{9}+\frac{1107}{157}a^{8}+\frac{1614}{157}a^{7}+\frac{1455}{157}a^{6}+\frac{596}{157}a^{5}-\frac{93}{157}a^{4}-\frac{580}{157}a^{3}-\frac{572}{157}a^{2}-\frac{279}{157}a+\frac{121}{157}$, $\frac{46}{157}a^{15}-\frac{33}{157}a^{14}-\frac{90}{157}a^{13}-\frac{228}{157}a^{12}-\frac{326}{157}a^{11}-\frac{104}{157}a^{10}+\frac{184}{157}a^{9}+\frac{614}{157}a^{8}+\frac{895}{157}a^{7}+\frac{996}{157}a^{6}+\frac{705}{157}a^{5}+\frac{264}{157}a^{4}-\frac{61}{157}a^{3}-\frac{348}{157}a^{2}-\frac{297}{157}a-\frac{227}{157}$, $\frac{91}{157}a^{15}-\frac{117}{157}a^{14}-\frac{212}{157}a^{13}-\frac{215}{157}a^{12}-\frac{249}{157}a^{11}+\frac{182}{157}a^{10}+\frac{532}{157}a^{9}+\frac{731}{157}a^{8}+\frac{560}{157}a^{7}+\frac{415}{157}a^{6}+\frac{235}{157}a^{5}+\frac{125}{157}a^{4}+\frac{108}{157}a^{3}-\frac{36}{157}a^{2}+\frac{85}{157}a-\frac{139}{157}$, $\frac{4}{157}a^{15}+\frac{83}{157}a^{14}-\frac{41}{157}a^{13}-\frac{295}{157}a^{12}-\frac{513}{157}a^{11}-\frac{368}{157}a^{10}-\frac{2}{157}a^{9}+\frac{820}{157}a^{8}+\frac{1548}{157}a^{7}+\frac{1372}{157}a^{6}+\frac{801}{157}a^{5}+\frac{135}{157}a^{4}-\frac{292}{157}a^{3}-\frac{401}{157}a^{2}-\frac{216}{157}a+\frac{32}{157}$, $\frac{36}{157}a^{15}-\frac{11}{157}a^{14}-\frac{64}{157}a^{13}-\frac{230}{157}a^{12}-\frac{378}{157}a^{11}-\frac{220}{157}a^{10}+\frac{80}{157}a^{9}+\frac{695}{157}a^{8}+\frac{1041}{157}a^{7}+\frac{1110}{157}a^{6}+\frac{713}{157}a^{5}+\frac{382}{157}a^{4}-\frac{116}{157}a^{3}-\frac{242}{157}a^{2}-\frac{69}{157}a-\frac{156}{157}$, $\frac{52}{157}a^{15}+\frac{29}{157}a^{14}-\frac{183}{157}a^{13}-\frac{347}{157}a^{12}-\frac{703}{157}a^{11}-\frac{353}{157}a^{10}+\frac{210}{157}a^{9}+\frac{1290}{157}a^{8}+\frac{1980}{157}a^{7}+\frac{1872}{157}a^{6}+\frac{1072}{157}a^{5}+\frac{220}{157}a^{4}-\frac{499}{157}a^{3}-\frac{626}{157}a^{2}-\frac{260}{157}a-\frac{163}{157}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 306.896910129 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 306.896910129 \cdot 1}{2\cdot\sqrt{683032622823828125}}\cr\approx \mathstrut & 0.182785183744 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.6.153469375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.2.638966001996484375.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.4.0.1}{4} }^{2}$ | $16$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | R | R | $16$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(29\) | $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
29.2.1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(31\) | 31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
31.4.2.1 | $x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(89\) | 89.4.2.1 | $x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
89.4.2.1 | $x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
89.8.0.1 | $x^{8} + 65 x^{3} + 40 x^{2} + 79 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |