Normalized defining polynomial
\( x^{16} - 2 x^{15} + 14 x^{14} + 1269 x^{13} - 37712 x^{12} + 379060 x^{11} - 4073673 x^{10} + 15481249 x^{9} - 92090702 x^{8} + 80128862 x^{7} - 831919255 x^{6} - 1323459410 x^{5} + 25241662310 x^{4} + 52344317495 x^{3} + 541452941068 x^{2} + 553864288512 x + 2220423519641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6825950925050758427882178827125973556097=47^{6}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $308.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11773} a^{14} - \frac{4906}{11773} a^{13} + \frac{5623}{11773} a^{12} - \frac{871}{11773} a^{11} - \frac{830}{11773} a^{10} - \frac{769}{11773} a^{9} + \frac{2522}{11773} a^{8} + \frac{3112}{11773} a^{7} - \frac{4812}{11773} a^{6} - \frac{3302}{11773} a^{5} - \frac{2524}{11773} a^{4} + \frac{4720}{11773} a^{3} - \frac{2614}{11773} a^{2} - \frac{1919}{11773} a - \frac{2993}{11773}$, $\frac{1}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{15} + \frac{101096463925096799143590458681625248072069562638166387298412381143112549180419495349}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{14} - \frac{639049178467794877747351193796051694569847353244113023380957925679822413465420612721106}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{13} - \frac{1153498339788283371823882062199195496980632141229709744033547590956425618226419905121318}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{12} - \frac{1190556528900180548836443649659570999101072881852847609196317379768987582636899079417268}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{11} + \frac{77731259707472727085399225818252606834394174851455586672717530260946043607386667015981}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{10} - \frac{1477352007851356148682834571575233439461425271354790170340560722412768803092992394509219}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{9} - \frac{1345534281025662644842401899903720032911667869144412773964188229062944280745482926860640}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{8} - \frac{18761892821583869341534324473634736857833585630523435931317322866485679514609586719135}{51520682671514528149952632933515683463883034859413497896170247638214162487619676681131} a^{7} - \frac{127417029315516675940468367996480539910743788634143878877992869401134388051091275176005}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{6} + \frac{1162760511925498198819137770708660743545257657373649462763090642405424857812744875424345}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{5} - \frac{937213272661227184351892173264941185839591579938462647775800306215178605946363535505834}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{4} + \frac{327174335857680356505654156242261778125962692433133991843812872202944204241244316084866}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{3} - \frac{717290081985086528137234386568923494297211581627128667330589113079389816736873721260818}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a^{2} + \frac{455922730408802926623867636279611667616149767746087815410885723915344797064391309350859}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991} a - \frac{1283015047483088307527242988025362811720331081180291582246368745081171351388217234276072}{3142761642962386217147110608944456691296865126424223371666385105931063911744800277548991}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 888041715537 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||