Properties

Label 16.4.66900227008...9293.2
Degree $16$
Signature $[4, 6]$
Discriminant $3^{8}\cdot 13^{9}\cdot 1327^{8}$
Root discriminant $267.05$
Ramified primes $3, 13, 1327$
Class number $96$ (GRH)
Class group $[2, 48]$ (GRH)
Galois group 16T1675

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![122603533, 0, 1581795462, 0, 506855805, 0, 36489216, 0, -690838, 0, -136830, 0, -2664, 0, 48, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 48*x^14 - 2664*x^12 - 136830*x^10 - 690838*x^8 + 36489216*x^6 + 506855805*x^4 + 1581795462*x^2 + 122603533)
 
gp: K = bnfinit(x^16 + 48*x^14 - 2664*x^12 - 136830*x^10 - 690838*x^8 + 36489216*x^6 + 506855805*x^4 + 1581795462*x^2 + 122603533, 1)
 

Normalized defining polynomial

\( x^{16} + 48 x^{14} - 2664 x^{12} - 136830 x^{10} - 690838 x^{8} + 36489216 x^{6} + 506855805 x^{4} + 1581795462 x^{2} + 122603533 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(669002270083080728394108412888785769293=3^{8}\cdot 13^{9}\cdot 1327^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $267.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13, 1327$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{148} a^{11} - \frac{1}{37} a^{9} - \frac{6}{37} a^{7} - \frac{11}{148} a^{5} - \frac{13}{148} a^{3} - \frac{1}{2} a^{2} - \frac{16}{37} a - \frac{1}{2}$, $\frac{1}{296} a^{12} - \frac{1}{74} a^{10} - \frac{1}{8} a^{9} + \frac{13}{296} a^{8} + \frac{63}{296} a^{6} - \frac{1}{4} a^{5} - \frac{13}{296} a^{4} + \frac{1}{8} a^{3} + \frac{121}{296} a^{2} - \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{296} a^{13} - \frac{1}{8} a^{10} - \frac{3}{296} a^{9} - \frac{33}{296} a^{7} - \frac{1}{4} a^{6} - \frac{57}{296} a^{5} + \frac{1}{8} a^{4} + \frac{69}{296} a^{3} - \frac{1}{8} a^{2} + \frac{3}{296} a$, $\frac{1}{355817350135008241829320904} a^{14} - \frac{425775615388391109855749}{355817350135008241829320904} a^{12} - \frac{1}{296} a^{11} + \frac{25987558678619311069111547}{355817350135008241829320904} a^{10} - \frac{33}{296} a^{9} - \frac{8164481798236007115765295}{88954337533752060457330226} a^{8} - \frac{25}{148} a^{7} - \frac{3198393559820535652750498}{44477168766876030228665113} a^{6} + \frac{11}{296} a^{5} + \frac{13365214252862199771999609}{88954337533752060457330226} a^{4} - \frac{3}{37} a^{3} - \frac{25303489376520703242376277}{177908675067504120914660452} a^{2} - \frac{121}{296} a - \frac{68244195787812335179309}{259910409156324500971016}$, $\frac{1}{29532840061205684071833635032} a^{15} - \frac{3412179420304100024189047}{7383210015301421017958408758} a^{13} - \frac{62966778855132749388218679}{29532840061205684071833635032} a^{11} + \frac{737378734155724498021794433}{14766420030602842035916817516} a^{9} - \frac{1}{8} a^{8} - \frac{2613677536453810044203517181}{29532840061205684071833635032} a^{7} - \frac{2928913621653941227866546033}{29532840061205684071833635032} a^{5} - \frac{1}{4} a^{4} - \frac{2898258329144636312807961213}{7383210015301421017958408758} a^{3} - \frac{3}{8} a^{2} - \frac{2395080039570894151148925}{798184866519072542481990136} a - \frac{1}{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{48}$, which has order $96$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 138575391269 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1675:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 6144
The 54 conjugacy class representatives for t16n1675 are not computed
Character table for t16n1675 is not computed

Intermediate fields

\(\Q(\sqrt{51753}) \), 4.4.3981.1, 8.8.7173681975339714081.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.6.3.1$x^{6} - 52 x^{4} + 676 x^{2} - 79092$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
13.6.3.1$x^{6} - 52 x^{4} + 676 x^{2} - 79092$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
1327Data not computed