Normalized defining polynomial
\( x^{16} - 7 x^{15} + 45 x^{14} - 140 x^{13} + 228 x^{12} + 712 x^{11} - 5230 x^{10} + 19654 x^{9} - 54463 x^{8} + 117065 x^{7} - 236177 x^{6} + 186494 x^{5} - 201775 x^{4} - 1012458 x^{3} + 3355324 x^{2} - 853320 x + 8859211 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66814405147552869881269516352=2^{6}\cdot 43^{6}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{286558025329999230246358571341094982299587856456404} a^{15} - \frac{11920268345081703677040848883847985743472781509003}{143279012664999615123179285670547491149793928228202} a^{14} - \frac{43840463389411531344397305888178009174198985983087}{286558025329999230246358571341094982299587856456404} a^{13} + \frac{18304013097751343059520378884541273713536465167099}{286558025329999230246358571341094982299587856456404} a^{12} + \frac{49131212179671930010920048659889728896559805491299}{286558025329999230246358571341094982299587856456404} a^{11} + \frac{43125657425256153337099625208013198295835417288113}{286558025329999230246358571341094982299587856456404} a^{10} - \frac{90728356646440657940631583232736927851907953072817}{286558025329999230246358571341094982299587856456404} a^{9} + \frac{86456848197115510073656139691031095968973747367575}{286558025329999230246358571341094982299587856456404} a^{8} - \frac{15768889383487668607455351685827226832797619538717}{71639506332499807561589642835273745574896964114101} a^{7} + \frac{76367592263079728089815592273918358757411939134067}{286558025329999230246358571341094982299587856456404} a^{6} - \frac{30807822000223175003254797912943917573263532005359}{71639506332499807561589642835273745574896964114101} a^{5} - \frac{16110624357773653803817262183523348585796131439327}{143279012664999615123179285670547491149793928228202} a^{4} + \frac{119849760355721126233701833225501487373337687345475}{286558025329999230246358571341094982299587856456404} a^{3} + \frac{108963236605781686507124763055652118928431874911281}{286558025329999230246358571341094982299587856456404} a^{2} - \frac{110541667461551380736540708317049262881962176664565}{286558025329999230246358571341094982299587856456404} a + \frac{53145722453088969972379269911347192951156811847867}{286558025329999230246358571341094982299587856456404}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20150704.1497 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 104 conjugacy class representatives for t16n1847 are not computed |
| Character table for t16n1847 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||