Normalized defining polynomial
\( x^{16} - 2 x^{15} - 71 x^{14} - 594 x^{13} - 1314 x^{12} + 23490 x^{11} - 31071 x^{10} - 1021142 x^{9} - 672816 x^{8} + 26104182 x^{7} + 40256551 x^{6} - 138704654 x^{5} - 851453509 x^{4} - 2976531288 x^{3} + 3547643640 x^{2} - 4436177792 x + 5275133488 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(649643018047387088671190961146262716416=2^{25}\cdot 13^{7}\cdot 17^{8}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $266.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{344} a^{13} + \frac{2}{43} a^{12} - \frac{23}{344} a^{11} - \frac{1}{86} a^{10} - \frac{31}{172} a^{9} + \frac{79}{172} a^{8} + \frac{3}{8} a^{7} - \frac{20}{43} a^{6} + \frac{11}{86} a^{5} + \frac{31}{172} a^{4} - \frac{41}{344} a^{3} + \frac{41}{86} a^{2} + \frac{63}{344} a - \frac{33}{172}$, $\frac{1}{16512} a^{14} + \frac{1}{8256} a^{13} - \frac{2483}{16512} a^{12} - \frac{33}{2752} a^{11} - \frac{175}{8256} a^{10} + \frac{1889}{8256} a^{9} - \frac{5695}{16512} a^{8} - \frac{3133}{8256} a^{7} + \frac{47}{1376} a^{6} - \frac{793}{8256} a^{5} - \frac{49}{16512} a^{4} + \frac{971}{8256} a^{3} + \frac{6023}{16512} a^{2} + \frac{609}{1376} a + \frac{575}{4128}$, $\frac{1}{115208728527024274399706453213340772645629847775155670395166637293165568} a^{15} + \frac{235439919428847157228253837414514805044486775933268519459937152817}{9600727377252022866642204434445064387135820647929639199597219774430464} a^{14} + \frac{35176223813021798736391567659197896570187683963892278957195140908363}{38402909509008091466568817737780257548543282591718556798388879097721856} a^{13} + \frac{5343494787311003109947516564078406823711331299266196244688051824734735}{28802182131756068599926613303335193161407461943788917598791659323291392} a^{12} - \frac{9347765221357075740033223922056529694686894227964526151888076593852909}{57604364263512137199853226606670386322814923887577835197583318646582784} a^{11} - \frac{7641500943389568514685533044319203359698317091843966773180065245686869}{57604364263512137199853226606670386322814923887577835197583318646582784} a^{10} - \frac{8605122870413172986030855144933435197793825693481849544203492380520889}{38402909509008091466568817737780257548543282591718556798388879097721856} a^{9} + \frac{733901905633809493120628685683933216997248257133818659686819027379499}{2400181844313005716660551108611266096783955161982409799899304943607616} a^{8} + \frac{142589795938668544740437682798928340371809955902034998432115305535291}{7200545532939017149981653325833798290351865485947229399697914830822848} a^{7} - \frac{11034831529129127560828739154444571070602911526164855719152827698152309}{57604364263512137199853226606670386322814923887577835197583318646582784} a^{6} + \frac{785611188523657527784876986299344275334835295338268935301558202693193}{38402909509008091466568817737780257548543282591718556798388879097721856} a^{5} + \frac{1489891538257866442924301476173208341544882281803492364818798425104633}{9600727377252022866642204434445064387135820647929639199597219774430464} a^{4} + \frac{12916520082575712377391583361264631605484944821175417431623131894086753}{38402909509008091466568817737780257548543282591718556798388879097721856} a^{3} + \frac{25865773792936655421021999558565713240534979197068063554068906483158953}{57604364263512137199853226606670386322814923887577835197583318646582784} a^{2} - \frac{11460105688479270492279292700716880720717052126837497261816400694197571}{28802182131756068599926613303335193161407461943788917598791659323291392} a + \frac{3403934972122559611547616172698290933049938403546538700586190294936795}{14401091065878034299963306651667596580703730971894458799395829661645696}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3157912200040 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n1022 |
| Character table for t16n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.334373.2, 8.4.16557918172192384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.16.37 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.8.0.1 | $x^{8} - x + 62$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 89.8.7.2 | $x^{8} - 801$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |