Normalized defining polynomial
\( x^{16} - 2 x^{15} - 71 x^{14} - 34 x^{13} + 723 x^{12} - 8832 x^{11} - 94666 x^{10} - 468360 x^{9} - 1918375 x^{8} - 7734654 x^{7} - 41515411 x^{6} - 295108878 x^{5} - 1500851413 x^{4} - 4355717896 x^{3} - 7041595136 x^{2} - 6108741920 x - 2267436592 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(649643018047387088671190961146262716416=2^{25}\cdot 13^{7}\cdot 17^{8}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $266.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{86} a^{13} + \frac{8}{43} a^{12} + \frac{4}{43} a^{11} + \frac{9}{86} a^{10} + \frac{17}{86} a^{9} - \frac{29}{86} a^{8} - \frac{23}{86} a^{7} - \frac{14}{43} a^{6} + \frac{12}{43} a^{5} - \frac{7}{86} a^{4} + \frac{1}{86} a^{3} - \frac{29}{86} a^{2} + \frac{18}{43} a + \frac{9}{43}$, $\frac{1}{6536} a^{14} - \frac{15}{3268} a^{13} - \frac{255}{6536} a^{12} - \frac{201}{3268} a^{11} + \frac{1323}{6536} a^{10} + \frac{281}{1634} a^{9} - \frac{699}{3268} a^{8} - \frac{17}{86} a^{7} - \frac{2171}{6536} a^{6} - \frac{491}{3268} a^{5} + \frac{103}{344} a^{4} - \frac{661}{3268} a^{3} - \frac{2801}{6536} a^{2} - \frac{194}{817} a - \frac{29}{86}$, $\frac{1}{1052119807633822202609305873765504624728597205140234319888256} a^{15} + \frac{419223092929498572623492891622435071778823305372858247}{263029951908455550652326468441376156182149301285058579972064} a^{14} + \frac{4573986541503604014454833327715182872230851227915879035393}{1052119807633822202609305873765504624728597205140234319888256} a^{13} + \frac{35443686719145123150508303125113147363005589039516289585983}{263029951908455550652326468441376156182149301285058579972064} a^{12} + \frac{212444532406367563036813265524808427882610636816811964134043}{1052119807633822202609305873765504624728597205140234319888256} a^{11} + \frac{18401270288530519909529334396031011954821210914436939688309}{526059903816911101304652936882752312364298602570117159944128} a^{10} - \frac{40468902746507397291754983155858110310503324477471439189071}{526059903816911101304652936882752312364298602570117159944128} a^{9} + \frac{75277632448143421056685556113841450586823384942547071879885}{263029951908455550652326468441376156182149301285058579972064} a^{8} - \frac{267626562576561570036830514070111724676805395235508578734223}{1052119807633822202609305873765504624728597205140234319888256} a^{7} - \frac{3479601108062773708441100322037714407526957099736630549911}{16439371994278471915770404277586009761384331330316161248254} a^{6} + \frac{454273759400262738457470948346563344605272427595296148869293}{1052119807633822202609305873765504624728597205140234319888256} a^{5} - \frac{60474488219841574799579047411249787176256415554948890059873}{131514975954227775326163234220688078091074650642529289986032} a^{4} + \frac{404846298643881708479831723776863553287787891402048833419003}{1052119807633822202609305873765504624728597205140234319888256} a^{3} + \frac{197182735657748659031047356211755289732857776926831804087633}{526059903816911101304652936882752312364298602570117159944128} a^{2} + \frac{74849880737449202604570777594366467543278351566007857393759}{263029951908455550652326468441376156182149301285058579972064} a - \frac{2239719218581296996289197058663156076583009809290470306753}{6921840839696198701377012327404635689003928981185752104528}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2898621472490 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n994 |
| Character table for t16n994 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.334373.2, 8.4.16557918172192384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.16.37 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.8.0.1 | $x^{8} - x + 62$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |