Properties

Label 16.4.64622044030...8125.1
Degree $16$
Signature $[4, 6]$
Discriminant $5^{8}\cdot 11^{4}\cdot 97^{2}\cdot 229^{3}$
Root discriminant $19.98$
Ramified primes $5, 11, 97, 229$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1781

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 18, -158, 512, -120, -557, 286, 531, -763, 422, -102, -16, 40, -30, 12, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 12*x^14 - 30*x^13 + 40*x^12 - 16*x^11 - 102*x^10 + 422*x^9 - 763*x^8 + 531*x^7 + 286*x^6 - 557*x^5 - 120*x^4 + 512*x^3 - 158*x^2 + 18*x - 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 12*x^14 - 30*x^13 + 40*x^12 - 16*x^11 - 102*x^10 + 422*x^9 - 763*x^8 + 531*x^7 + 286*x^6 - 557*x^5 - 120*x^4 + 512*x^3 - 158*x^2 + 18*x - 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 12 x^{14} - 30 x^{13} + 40 x^{12} - 16 x^{11} - 102 x^{10} + 422 x^{9} - 763 x^{8} + 531 x^{7} + 286 x^{6} - 557 x^{5} - 120 x^{4} + 512 x^{3} - 158 x^{2} + 18 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(646220440309430078125=5^{8}\cdot 11^{4}\cdot 97^{2}\cdot 229^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 97, 229$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} - \frac{8}{19} a^{13} + \frac{2}{19} a^{12} - \frac{6}{19} a^{11} - \frac{1}{19} a^{10} - \frac{7}{19} a^{9} + \frac{6}{19} a^{8} + \frac{8}{19} a^{7} - \frac{2}{19} a^{6} - \frac{6}{19} a^{5} - \frac{5}{19} a^{4} - \frac{5}{19} a^{2} - \frac{5}{19}$, $\frac{1}{2831787111122556553} a^{15} - \frac{3541364107799253}{2831787111122556553} a^{14} - \frac{1187705377972982230}{2831787111122556553} a^{13} - \frac{132894848860094390}{2831787111122556553} a^{12} - \frac{1190729034356623081}{2831787111122556553} a^{11} + \frac{249680257432786934}{2831787111122556553} a^{10} - \frac{453392992258777824}{2831787111122556553} a^{9} - \frac{358263103661542147}{2831787111122556553} a^{8} - \frac{980258909249068025}{2831787111122556553} a^{7} - \frac{524617294884569701}{2831787111122556553} a^{6} + \frac{266048285181784028}{2831787111122556553} a^{5} - \frac{95421454842780099}{2831787111122556553} a^{4} - \frac{983625587795348208}{2831787111122556553} a^{3} - \frac{1391080471261308789}{2831787111122556553} a^{2} - \frac{395580166597630332}{2831787111122556553} a - \frac{501825195049541643}{2831787111122556553}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 11538.9899739 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1781:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 148 conjugacy class representatives for t16n1781 are not computed
Character table for t16n1781 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.275.1, 8.4.17318125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R $16$ R $16$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$97$97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
229Data not computed