Normalized defining polynomial
\( x^{16} - 8 x^{15} + 18 x^{14} + 14 x^{13} - 106 x^{12} + 90 x^{11} + 136 x^{10} - 218 x^{9} - 44 x^{8} + 186 x^{7} - 46 x^{6} + 2 x^{5} - 84 x^{4} + 88 x^{3} - 8 x^{2} - 21 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(642366916348420476801=3^{8}\cdot 7^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{3}{7} a^{8} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{8} + \frac{3}{7} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{9} + \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{49} a^{13} - \frac{3}{49} a^{12} + \frac{2}{49} a^{11} + \frac{1}{49} a^{10} + \frac{17}{49} a^{9} + \frac{17}{49} a^{8} + \frac{17}{49} a^{7} + \frac{24}{49} a^{6} - \frac{12}{49} a^{5} - \frac{11}{49} a^{4} - \frac{20}{49} a^{3} - \frac{13}{49} a^{2} + \frac{17}{49} a + \frac{6}{49}$, $\frac{1}{1617} a^{14} - \frac{1}{231} a^{13} + \frac{2}{33} a^{12} - \frac{5}{231} a^{11} + \frac{23}{539} a^{10} - \frac{269}{539} a^{9} - \frac{674}{1617} a^{8} + \frac{278}{1617} a^{7} + \frac{90}{539} a^{6} - \frac{256}{539} a^{5} - \frac{193}{1617} a^{4} + \frac{445}{1617} a^{3} + \frac{433}{1617} a^{2} - \frac{496}{1617} a + \frac{223}{539}$, $\frac{1}{95403} a^{15} + \frac{2}{8673} a^{14} + \frac{108}{31801} a^{13} + \frac{6371}{95403} a^{12} - \frac{302}{8673} a^{11} - \frac{1153}{31801} a^{10} + \frac{29647}{95403} a^{9} - \frac{42005}{95403} a^{8} - \frac{44204}{95403} a^{7} - \frac{328}{2891} a^{6} + \frac{39146}{95403} a^{5} - \frac{23731}{95403} a^{4} + \frac{6745}{31801} a^{3} + \frac{7639}{95403} a^{2} + \frac{42781}{95403} a - \frac{1068}{31801}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25672.5485932 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_8$ (as 16T29):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2\times D_8$ |
| Character table for $C_2\times D_8$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{133}) \), \(\Q(\sqrt{57}) \), 4.2.53067.1, 4.2.53067.2, \(\Q(\sqrt{21}, \sqrt{57})\), 8.2.8448319467.1, 8.2.8448319467.2, 8.4.25344958401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |