Normalized defining polynomial
\( x^{16} + 38 x^{14} - 3878 x^{12} - 95067 x^{10} + 5170588 x^{8} + 85763937 x^{6} - 3234288019 x^{4} - 40931317670 x^{2} + 362422200389 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6329643282720100095594349789184=2^{16}\cdot 149^{5}\cdot 331^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 149, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{149} a^{12} + \frac{38}{149} a^{10} - \frac{4}{149} a^{8} - \frac{5}{149} a^{6} - \frac{10}{149} a^{4} - \frac{16}{149} a^{2}$, $\frac{1}{149} a^{13} + \frac{38}{149} a^{11} - \frac{4}{149} a^{9} - \frac{5}{149} a^{7} - \frac{10}{149} a^{5} - \frac{16}{149} a^{3}$, $\frac{1}{984111378718045502173343103229949223041} a^{14} + \frac{1799137429365711501071402828426495723}{984111378718045502173343103229949223041} a^{12} - \frac{132503130202324979143802393004837009779}{984111378718045502173343103229949223041} a^{10} - \frac{355365198649241472109338800375708252997}{984111378718045502173343103229949223041} a^{8} - \frac{419003336867541979674468461151140684468}{984111378718045502173343103229949223041} a^{6} + \frac{32748144077943018092247026336059085705}{984111378718045502173343103229949223041} a^{4} + \frac{1368808086456021446580263843830608397}{6604774353812385920626463780066773309} a^{2} - \frac{20487235847900719256020361371981}{133919470261205335076268046393211}$, $\frac{1}{984111378718045502173343103229949223041} a^{15} + \frac{1799137429365711501071402828426495723}{984111378718045502173343103229949223041} a^{13} - \frac{132503130202324979143802393004837009779}{984111378718045502173343103229949223041} a^{11} - \frac{355365198649241472109338800375708252997}{984111378718045502173343103229949223041} a^{9} - \frac{419003336867541979674468461151140684468}{984111378718045502173343103229949223041} a^{7} + \frac{32748144077943018092247026336059085705}{984111378718045502173343103229949223041} a^{5} + \frac{1368808086456021446580263843830608397}{6604774353812385920626463780066773309} a^{3} - \frac{20487235847900719256020361371981}{133919470261205335076268046393211} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 550048235.085 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for t16n1674 are not computed |
| Character table for t16n1674 is not computed |
Intermediate fields
| 4.2.331.1, 8.4.16324589.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $149$ | 149.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 149.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.6.3.1 | $x^{6} - 298 x^{4} + 22201 x^{2} - 1071775476$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 331 | Data not computed | ||||||