Normalized defining polynomial
\( x^{16} - 26 x^{14} - 1462 x^{12} + 66907 x^{10} - 1701276 x^{8} + 18738707 x^{6} + 630660678 x^{4} - 23155221181 x^{2} + 362422200389 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6329643282720100095594349789184=2^{16}\cdot 149^{5}\cdot 331^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 149, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{149} a^{12} - \frac{26}{149} a^{10} + \frac{28}{149} a^{8} + \frac{6}{149} a^{6} + \frac{6}{149} a^{4} + \frac{20}{149} a^{2}$, $\frac{1}{149} a^{13} - \frac{26}{149} a^{11} + \frac{28}{149} a^{9} + \frac{6}{149} a^{7} + \frac{6}{149} a^{5} + \frac{20}{149} a^{3}$, $\frac{1}{97599549188272790450335536184111369067} a^{14} + \frac{116025840549127205257023733971011157}{97599549188272790450335536184111369067} a^{12} + \frac{26963514694313950690234875572030745067}{97599549188272790450335536184111369067} a^{10} + \frac{18498592734785277616338357096094502454}{97599549188272790450335536184111369067} a^{8} - \frac{12836681175071347443596343599764627965}{97599549188272790450335536184111369067} a^{6} - \frac{2641921552129787363611451189749490065}{97599549188272790450335536184111369067} a^{4} + \frac{65520563888535492871453723247331665}{655030531464918056713661316671888383} a^{2} + \frac{5989975375471861859800548880842}{13281504723634259752096784538857}$, $\frac{1}{97599549188272790450335536184111369067} a^{15} + \frac{116025840549127205257023733971011157}{97599549188272790450335536184111369067} a^{13} + \frac{26963514694313950690234875572030745067}{97599549188272790450335536184111369067} a^{11} + \frac{18498592734785277616338357096094502454}{97599549188272790450335536184111369067} a^{9} - \frac{12836681175071347443596343599764627965}{97599549188272790450335536184111369067} a^{7} - \frac{2641921552129787363611451189749490065}{97599549188272790450335536184111369067} a^{5} + \frac{65520563888535492871453723247331665}{655030531464918056713661316671888383} a^{3} + \frac{5989975375471861859800548880842}{13281504723634259752096784538857} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 952139814.783 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 36 conjugacy class representatives for t16n1540 |
| Character table for t16n1540 is not computed |
Intermediate fields
| 4.2.331.1, 8.4.16324589.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 149 | Data not computed | ||||||
| 331 | Data not computed | ||||||