Properties

Label 16.4.62452519485...1184.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{46}\cdot 31^{6}$
Root discriminant $26.59$
Ramified primes $2, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T864

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -64, 112, -112, -100, -16, -4, -32, 17, 96, -24, -64, -10, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 - 10*x^12 - 64*x^11 - 24*x^10 + 96*x^9 + 17*x^8 - 32*x^7 - 4*x^6 - 16*x^5 - 100*x^4 - 112*x^3 + 112*x^2 - 64*x + 8)
 
gp: K = bnfinit(x^16 - 4*x^14 - 10*x^12 - 64*x^11 - 24*x^10 + 96*x^9 + 17*x^8 - 32*x^7 - 4*x^6 - 16*x^5 - 100*x^4 - 112*x^3 + 112*x^2 - 64*x + 8, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{14} - 10 x^{12} - 64 x^{11} - 24 x^{10} + 96 x^{9} + 17 x^{8} - 32 x^{7} - 4 x^{6} - 16 x^{5} - 100 x^{4} - 112 x^{3} + 112 x^{2} - 64 x + 8 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(62452519485024117981184=2^{46}\cdot 31^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{28} a^{12} - \frac{1}{28} a^{11} + \frac{1}{28} a^{10} - \frac{1}{14} a^{9} - \frac{5}{28} a^{8} - \frac{3}{28} a^{7} - \frac{3}{28} a^{6} + \frac{3}{7} a^{5} + \frac{1}{14} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{28} a^{13} - \frac{1}{28} a^{10} - \frac{1}{4} a^{9} + \frac{3}{14} a^{8} - \frac{3}{14} a^{7} + \frac{9}{28} a^{6} - \frac{1}{2} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{28} a^{14} - \frac{1}{28} a^{11} + \frac{3}{14} a^{9} - \frac{3}{14} a^{8} - \frac{5}{28} a^{7} + \frac{1}{4} a^{6} + \frac{2}{7} a^{5} + \frac{3}{14} a^{4} + \frac{5}{14} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{1819892837924} a^{15} - \frac{2125137411}{1819892837924} a^{14} - \frac{3141929173}{1819892837924} a^{13} + \frac{6749077605}{1819892837924} a^{12} - \frac{22970295675}{259984691132} a^{11} + \frac{183492832539}{1819892837924} a^{10} - \frac{400736137785}{1819892837924} a^{9} - \frac{310236494745}{1819892837924} a^{8} - \frac{95333844876}{454973209481} a^{7} + \frac{90720890913}{909946418962} a^{6} + \frac{217888862215}{454973209481} a^{5} - \frac{19329805401}{909946418962} a^{4} - \frac{360152843163}{909946418962} a^{3} - \frac{19273911463}{64996172783} a^{2} + \frac{7525309767}{454973209481} a + \frac{23214588450}{64996172783}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 690113.356009 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T864:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 41 conjugacy class representatives for t16n864
Character table for t16n864 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.4.4030726144.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.1$x^{4} + 12 x^{2} + 2$$4$$1$$11$$C_4$$[3, 4]$
2.4.11.1$x^{4} + 12 x^{2} + 2$$4$$1$$11$$C_4$$[3, 4]$
2.8.24.10$x^{8} + 16$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
$31$31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.3.2$x^{4} - 31$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
31.4.3.2$x^{4} - 31$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$