Normalized defining polynomial
\( x^{16} - 4 x^{14} - 10 x^{12} - 64 x^{11} - 24 x^{10} + 96 x^{9} + 17 x^{8} - 32 x^{7} - 4 x^{6} - 16 x^{5} - 100 x^{4} - 112 x^{3} + 112 x^{2} - 64 x + 8 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62452519485024117981184=2^{46}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{28} a^{12} - \frac{1}{28} a^{11} + \frac{1}{28} a^{10} - \frac{1}{14} a^{9} - \frac{5}{28} a^{8} - \frac{3}{28} a^{7} - \frac{3}{28} a^{6} + \frac{3}{7} a^{5} + \frac{1}{14} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{28} a^{13} - \frac{1}{28} a^{10} - \frac{1}{4} a^{9} + \frac{3}{14} a^{8} - \frac{3}{14} a^{7} + \frac{9}{28} a^{6} - \frac{1}{2} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{28} a^{14} - \frac{1}{28} a^{11} + \frac{3}{14} a^{9} - \frac{3}{14} a^{8} - \frac{5}{28} a^{7} + \frac{1}{4} a^{6} + \frac{2}{7} a^{5} + \frac{3}{14} a^{4} + \frac{5}{14} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{1819892837924} a^{15} - \frac{2125137411}{1819892837924} a^{14} - \frac{3141929173}{1819892837924} a^{13} + \frac{6749077605}{1819892837924} a^{12} - \frac{22970295675}{259984691132} a^{11} + \frac{183492832539}{1819892837924} a^{10} - \frac{400736137785}{1819892837924} a^{9} - \frac{310236494745}{1819892837924} a^{8} - \frac{95333844876}{454973209481} a^{7} + \frac{90720890913}{909946418962} a^{6} + \frac{217888862215}{454973209481} a^{5} - \frac{19329805401}{909946418962} a^{4} - \frac{360152843163}{909946418962} a^{3} - \frac{19273911463}{64996172783} a^{2} + \frac{7525309767}{454973209481} a + \frac{23214588450}{64996172783}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 690113.356009 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n864 |
| Character table for t16n864 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.4.4030726144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |