Properties

Label 16.4.62019327754...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{44}\cdot 5^{10}\cdot 19^{2}$
Root discriminant $26.58$
Ramified primes $2, 5, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T799

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![121, 660, 1208, 1192, 552, -788, -220, 36, 851, -732, 300, -220, 62, -24, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 4*x^14 - 24*x^13 + 62*x^12 - 220*x^11 + 300*x^10 - 732*x^9 + 851*x^8 + 36*x^7 - 220*x^6 - 788*x^5 + 552*x^4 + 1192*x^3 + 1208*x^2 + 660*x + 121)
 
gp: K = bnfinit(x^16 - 4*x^15 + 4*x^14 - 24*x^13 + 62*x^12 - 220*x^11 + 300*x^10 - 732*x^9 + 851*x^8 + 36*x^7 - 220*x^6 - 788*x^5 + 552*x^4 + 1192*x^3 + 1208*x^2 + 660*x + 121, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 4 x^{14} - 24 x^{13} + 62 x^{12} - 220 x^{11} + 300 x^{10} - 732 x^{9} + 851 x^{8} + 36 x^{7} - 220 x^{6} - 788 x^{5} + 552 x^{4} + 1192 x^{3} + 1208 x^{2} + 660 x + 121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(62019327754240000000000=2^{44}\cdot 5^{10}\cdot 19^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.58$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{179} a^{14} + \frac{23}{179} a^{13} - \frac{86}{179} a^{12} - \frac{83}{179} a^{11} + \frac{76}{179} a^{10} - \frac{15}{179} a^{9} - \frac{83}{179} a^{8} - \frac{5}{179} a^{7} - \frac{57}{179} a^{6} + \frac{83}{179} a^{5} - \frac{54}{179} a^{4} - \frac{41}{179} a^{3} + \frac{70}{179} a^{2} + \frac{13}{179} a - \frac{60}{179}$, $\frac{1}{134649745112255363682967297} a^{15} + \frac{15419481657047592971909}{134649745112255363682967297} a^{14} - \frac{56958795750569214576877381}{134649745112255363682967297} a^{13} + \frac{45919246215476089422403567}{134649745112255363682967297} a^{12} + \frac{9624619039235876863593589}{134649745112255363682967297} a^{11} + \frac{3909282912498808090787417}{12240885919295942152997027} a^{10} + \frac{46345286975823437262665821}{134649745112255363682967297} a^{9} + \frac{65747504507688178632442859}{134649745112255363682967297} a^{8} + \frac{41557460792313171014573004}{134649745112255363682967297} a^{7} + \frac{8660125581071806411867146}{134649745112255363682967297} a^{6} + \frac{539851088893449544159006}{12240885919295942152997027} a^{5} - \frac{526000237792060958962848}{2282199069699243452253683} a^{4} + \frac{29148887457046730528242925}{134649745112255363682967297} a^{3} - \frac{39210499208188415076376645}{134649745112255363682967297} a^{2} - \frac{27751160762151170760469055}{134649745112255363682967297} a + \frac{968907266702276821206350}{12240885919295942152997027}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 123599.450849 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T799:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 62 conjugacy class representatives for t16n799 are not computed
Character table for t16n799 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.2.400.1, 4.2.1600.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.40960000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$