Properties

Label 16.4.611603351526953125.1
Degree $16$
Signature $[4, 6]$
Discriminant $6.116\times 10^{17}$
Root discriminant \(12.93\)
Ramified primes $5,109,119851$
Class number $1$
Class group trivial
Galois group $C_2^6.S_4^2:D_4$ (as 16T1905)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + x^13 - 12*x^12 - 2*x^11 - 14*x^10 - 25*x^9 - 5*x^8 - 25*x^7 - 14*x^6 - 2*x^5 - 12*x^4 + x^3 - x + 1)
 
gp: K = bnfinit(y^16 - y^15 + y^13 - 12*y^12 - 2*y^11 - 14*y^10 - 25*y^9 - 5*y^8 - 25*y^7 - 14*y^6 - 2*y^5 - 12*y^4 + y^3 - y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - x^15 + x^13 - 12*x^12 - 2*x^11 - 14*x^10 - 25*x^9 - 5*x^8 - 25*x^7 - 14*x^6 - 2*x^5 - 12*x^4 + x^3 - x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - x^15 + x^13 - 12*x^12 - 2*x^11 - 14*x^10 - 25*x^9 - 5*x^8 - 25*x^7 - 14*x^6 - 2*x^5 - 12*x^4 + x^3 - x + 1)
 

\( x^{16} - x^{15} + x^{13} - 12 x^{12} - 2 x^{11} - 14 x^{10} - 25 x^{9} - 5 x^{8} - 25 x^{7} - 14 x^{6} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(611603351526953125\) \(\medspace = 5^{8}\cdot 109\cdot 119851^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.93\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}109^{1/2}119851^{1/2}\approx 8082.004392475916$
Ramified primes:   \(5\), \(109\), \(119851\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{109}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{15}-a^{14}-a^{13}+a^{12}-11a^{11}-2a^{10}-3a^{9}-12a^{8}+11a^{7}+3a^{6}+3a^{5}+12a^{4}-a^{3}-2$, $6a^{15}-5a^{14}-5a^{13}+8a^{12}-66a^{11}-29a^{10}-44a^{9}-129a^{8}-25a^{7}-59a^{6}-67a^{5}+10a^{4}-18a^{3}-5a^{2}+5a-1$, $a^{15}-5a^{14}+2a^{13}+6a^{12}-17a^{11}+40a^{10}+21a^{9}+5a^{8}+91a^{7}+17a^{6}+22a^{5}+54a^{4}-11a^{3}+5a^{2}+5a-6$, $8a^{14}-4a^{13}-11a^{12}+8a^{11}-81a^{10}-66a^{9}-52a^{8}-163a^{7}-62a^{6}-52a^{5}-85a^{4}+5a^{3}-7a^{2}-8a+8$, $a^{15}-2a^{14}+a^{13}+2a^{12}-14a^{11}+9a^{10}-10a^{9}-22a^{8}+16a^{7}-23a^{6}-10a^{5}+10a^{4}-14a^{3}+a^{2}+2a-2$, $a^{15}-2a^{14}+a^{13}+2a^{12}-14a^{11}+9a^{10}-10a^{9}-22a^{8}+16a^{7}-23a^{6}-10a^{5}+10a^{4}-14a^{3}+a^{2}+2a-1$, $5a^{15}-6a^{13}+a^{12}-52a^{11}-66a^{10}-72a^{9}-139a^{8}-103a^{7}-82a^{6}-86a^{5}-31a^{4}-11a^{3}-8a^{2}+3a+3$, $4a^{15}-3a^{14}-4a^{13}+4a^{12}-42a^{11}-21a^{10}-29a^{9}-74a^{8}-15a^{7}-35a^{6}-31a^{5}+4a^{4}-10a^{3}+a$, $a^{15}-a^{14}-3a^{13}+3a^{12}-8a^{11}-5a^{10}+16a^{9}-6a^{8}+10a^{7}+24a^{6}-4a^{5}+8a^{4}+5a^{3}-5a^{2}-a-1$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 276.170960833 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 276.170960833 \cdot 1}{2\cdot\sqrt{611603351526953125}}\cr\approx \mathstrut & 0.173825016679 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + x^13 - 12*x^12 - 2*x^11 - 14*x^10 - 25*x^9 - 5*x^8 - 25*x^7 - 14*x^6 - 2*x^5 - 12*x^4 + x^3 - x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - x^15 + x^13 - 12*x^12 - 2*x^11 - 14*x^10 - 25*x^9 - 5*x^8 - 25*x^7 - 14*x^6 - 2*x^5 - 12*x^4 + x^3 - x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - x^15 + x^13 - 12*x^12 - 2*x^11 - 14*x^10 - 25*x^9 - 5*x^8 - 25*x^7 - 14*x^6 - 2*x^5 - 12*x^4 + x^3 - x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - x^15 + x^13 - 12*x^12 - 2*x^11 - 14*x^10 - 25*x^9 - 5*x^8 - 25*x^7 - 14*x^6 - 2*x^5 - 12*x^4 + x^3 - x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^6.S_4^2:D_4$ (as 16T1905):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 294912
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$
Character table for $C_2^6.S_4^2:D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 8.6.74906875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $16$ ${\href{/padicField/3.8.0.1}{8} }^{2}$ R ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ $16$ ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ $16$ ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.16.8.1$x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(109\) Copy content Toggle raw display 109.2.0.1$x^{2} + 108 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.2.0.1$x^{2} + 108 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.2.1.2$x^{2} + 218$$2$$1$$1$$C_2$$[\ ]_{2}$
109.2.0.1$x^{2} + 108 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.2.0.1$x^{2} + 108 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.6.0.1$x^{6} + 107 x^{3} + 102 x^{2} + 66 x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$
\(119851\) Copy content Toggle raw display $\Q_{119851}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{119851}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{119851}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{119851}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{119851}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{119851}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$