Normalized defining polynomial
\( x^{16} - x^{15} + x^{13} - 12 x^{12} - 2 x^{11} - 14 x^{10} - 25 x^{9} - 5 x^{8} - 25 x^{7} - 14 x^{6} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(611603351526953125\) \(\medspace = 5^{8}\cdot 109\cdot 119851^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.93\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}109^{1/2}119851^{1/2}\approx 8082.004392475916$ | ||
Ramified primes: | \(5\), \(109\), \(119851\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{109}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{15}-a^{14}-a^{13}+a^{12}-11a^{11}-2a^{10}-3a^{9}-12a^{8}+11a^{7}+3a^{6}+3a^{5}+12a^{4}-a^{3}-2$, $6a^{15}-5a^{14}-5a^{13}+8a^{12}-66a^{11}-29a^{10}-44a^{9}-129a^{8}-25a^{7}-59a^{6}-67a^{5}+10a^{4}-18a^{3}-5a^{2}+5a-1$, $a^{15}-5a^{14}+2a^{13}+6a^{12}-17a^{11}+40a^{10}+21a^{9}+5a^{8}+91a^{7}+17a^{6}+22a^{5}+54a^{4}-11a^{3}+5a^{2}+5a-6$, $8a^{14}-4a^{13}-11a^{12}+8a^{11}-81a^{10}-66a^{9}-52a^{8}-163a^{7}-62a^{6}-52a^{5}-85a^{4}+5a^{3}-7a^{2}-8a+8$, $a^{15}-2a^{14}+a^{13}+2a^{12}-14a^{11}+9a^{10}-10a^{9}-22a^{8}+16a^{7}-23a^{6}-10a^{5}+10a^{4}-14a^{3}+a^{2}+2a-2$, $a^{15}-2a^{14}+a^{13}+2a^{12}-14a^{11}+9a^{10}-10a^{9}-22a^{8}+16a^{7}-23a^{6}-10a^{5}+10a^{4}-14a^{3}+a^{2}+2a-1$, $5a^{15}-6a^{13}+a^{12}-52a^{11}-66a^{10}-72a^{9}-139a^{8}-103a^{7}-82a^{6}-86a^{5}-31a^{4}-11a^{3}-8a^{2}+3a+3$, $4a^{15}-3a^{14}-4a^{13}+4a^{12}-42a^{11}-21a^{10}-29a^{9}-74a^{8}-15a^{7}-35a^{6}-31a^{5}+4a^{4}-10a^{3}+a$, $a^{15}-a^{14}-3a^{13}+3a^{12}-8a^{11}-5a^{10}+16a^{9}-6a^{8}+10a^{7}+24a^{6}-4a^{5}+8a^{4}+5a^{3}-5a^{2}-a-1$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 276.170960833 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 276.170960833 \cdot 1}{2\cdot\sqrt{611603351526953125}}\cr\approx \mathstrut & 0.173825016679 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.6.74906875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | $16$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(109\) | 109.2.0.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
109.2.0.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
109.2.1.2 | $x^{2} + 218$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
109.2.0.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
109.2.0.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
109.6.0.1 | $x^{6} + 107 x^{3} + 102 x^{2} + 66 x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(119851\) | $\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |