Properties

Label 16.4.60802881228...8125.1
Degree $16$
Signature $[4, 6]$
Discriminant $5^{8}\cdot 11^{4}\cdot 97^{4}\cdot 229^{3}$
Root discriminant $35.40$
Ramified primes $5, 11, 97, 229$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1781

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4351, -897, -7231, 16868, -10001, 2131, -1592, 1759, -1872, 1250, -569, 187, -16, -35, 25, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 25*x^14 - 35*x^13 - 16*x^12 + 187*x^11 - 569*x^10 + 1250*x^9 - 1872*x^8 + 1759*x^7 - 1592*x^6 + 2131*x^5 - 10001*x^4 + 16868*x^3 - 7231*x^2 - 897*x + 4351)
 
gp: K = bnfinit(x^16 - 8*x^15 + 25*x^14 - 35*x^13 - 16*x^12 + 187*x^11 - 569*x^10 + 1250*x^9 - 1872*x^8 + 1759*x^7 - 1592*x^6 + 2131*x^5 - 10001*x^4 + 16868*x^3 - 7231*x^2 - 897*x + 4351, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 25 x^{14} - 35 x^{13} - 16 x^{12} + 187 x^{11} - 569 x^{10} + 1250 x^{9} - 1872 x^{8} + 1759 x^{7} - 1592 x^{6} + 2131 x^{5} - 10001 x^{4} + 16868 x^{3} - 7231 x^{2} - 897 x + 4351 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6080288122871427605078125=5^{8}\cdot 11^{4}\cdot 97^{4}\cdot 229^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 97, 229$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{33760048965999} a^{14} - \frac{7}{33760048965999} a^{13} - \frac{176030075112}{11253349655333} a^{12} + \frac{3168541352107}{33760048965999} a^{11} + \frac{535844926748}{33760048965999} a^{10} + \frac{678620645926}{11253349655333} a^{9} - \frac{1085807433746}{11253349655333} a^{8} + \frac{636141161916}{11253349655333} a^{7} + \frac{1255282979791}{33760048965999} a^{6} + \frac{7139397781498}{33760048965999} a^{5} + \frac{2592132659798}{11253349655333} a^{4} - \frac{2081123268576}{11253349655333} a^{3} - \frac{2158033247489}{11253349655333} a^{2} - \frac{7316768368289}{33760048965999} a + \frac{617508967558}{1776844682421}$, $\frac{1}{34401489896352981} a^{15} + \frac{502}{34401489896352981} a^{14} - \frac{3545333231658794}{34401489896352981} a^{13} + \frac{5574859087773910}{34401489896352981} a^{12} + \frac{78845279033587}{603534910462333} a^{11} + \frac{140358158390613}{11467163298784327} a^{10} + \frac{2169584619216397}{34401489896352981} a^{9} + \frac{5422237405360063}{34401489896352981} a^{8} + \frac{15759544284333085}{34401489896352981} a^{7} + \frac{725798045347825}{1495716952015347} a^{6} - \frac{995497692743087}{11467163298784327} a^{5} + \frac{923447162631951}{11467163298784327} a^{4} - \frac{4223641030101246}{11467163298784327} a^{3} + \frac{11281707616027576}{34401489896352981} a^{2} + \frac{1509051810999013}{34401489896352981} a + \frac{297064768237680}{603534910462333}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1577026.55834 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1781:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 148 conjugacy class representatives for t16n1781 are not computed
Character table for t16n1781 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.275.1, 8.4.162946238125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R $16$ R $16$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$97$97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
229Data not computed