Normalized defining polynomial
\( x^{16} - 6 x^{15} + 24 x^{14} - 71 x^{13} + 102 x^{12} - 2071 x^{11} - 1977 x^{10} - 17693 x^{9} - 50858 x^{8} - 96551 x^{7} + 14598 x^{6} + 71270 x^{5} - 814270 x^{4} - 2949122 x^{3} - 4453919 x^{2} - 3048039 x - 754857 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5973428402662444840532734135129=13^{14}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{3} a^{4} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{12} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{18} a^{6} + \frac{1}{3} a^{4} + \frac{7}{18} a^{3} + \frac{7}{18} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{162} a^{13} + \frac{1}{81} a^{12} - \frac{10}{81} a^{10} + \frac{5}{54} a^{9} - \frac{17}{162} a^{8} + \frac{13}{162} a^{7} + \frac{7}{81} a^{6} - \frac{10}{27} a^{5} - \frac{11}{162} a^{4} - \frac{7}{54} a^{3} + \frac{35}{81} a^{2} + \frac{1}{18} a + \frac{2}{9}$, $\frac{1}{217566} a^{14} - \frac{457}{217566} a^{13} + \frac{275}{24174} a^{12} - \frac{179}{6399} a^{11} - \frac{253}{72522} a^{10} - \frac{626}{6399} a^{9} + \frac{11749}{217566} a^{8} + \frac{16279}{108783} a^{7} + \frac{3067}{72522} a^{6} - \frac{32519}{217566} a^{5} - \frac{1619}{36261} a^{4} + \frac{48752}{108783} a^{3} - \frac{5485}{12087} a^{2} - \frac{6131}{24174} a + \frac{159}{2686}$, $\frac{1}{16095697248173322099461489468139196998} a^{15} + \frac{3311405835096847060810657549973}{2682616208028887016576914911356532833} a^{14} + \frac{13809124601218333909172116202641699}{5365232416057774033153829822713065666} a^{13} + \frac{638326019891117805062888511416209}{105200635608975961434388820053197366} a^{12} - \frac{239881605626192164683198483497057843}{16095697248173322099461489468139196998} a^{11} + \frac{101079183488279608058466300550971565}{946805720480783652909499380478776294} a^{10} + \frac{948228727874437161463594315446462061}{8047848624086661049730744734069598499} a^{9} + \frac{493923921376831728967090620700270655}{8047848624086661049730744734069598499} a^{8} - \frac{7414931570423833450904102981950453}{2682616208028887016576914911356532833} a^{7} + \frac{8989148183384285069516926998356506}{2682616208028887016576914911356532833} a^{6} + \frac{7599821246151073284340515207086735875}{16095697248173322099461489468139196998} a^{5} + \frac{3329936381722271418973975862792919359}{16095697248173322099461489468139196998} a^{4} - \frac{8032519881262729472438586137669232611}{16095697248173322099461489468139196998} a^{3} + \frac{6201022439492478962756520421372201051}{16095697248173322099461489468139196998} a^{2} + \frac{759245494963719031940545856377147295}{1788410805352591344384609940904355222} a + \frac{45666611349566946170909922329438273}{105200635608975961434388820053197366}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2293989833.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.2.173563.1, 4.4.13711477.1, 4.2.13351.1, 8.4.2444059819779877.1 x2, 8.4.188004601521529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $79$ | 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |