Properties

Label 16.4.59190897027...8125.2
Degree $16$
Signature $[4, 6]$
Discriminant $3^{4}\cdot 5^{15}\cdot 41^{6}\cdot 71^{2}$
Root discriminant $40.81$
Ramified primes $3, 5, 41, 71$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1113

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![34621, 17764, -30260, -92185, -45635, 21267, 36668, -16515, -6675, 5950, -527, -878, 285, 55, -30, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 30*x^14 + 55*x^13 + 285*x^12 - 878*x^11 - 527*x^10 + 5950*x^9 - 6675*x^8 - 16515*x^7 + 36668*x^6 + 21267*x^5 - 45635*x^4 - 92185*x^3 - 30260*x^2 + 17764*x + 34621)
 
gp: K = bnfinit(x^16 - x^15 - 30*x^14 + 55*x^13 + 285*x^12 - 878*x^11 - 527*x^10 + 5950*x^9 - 6675*x^8 - 16515*x^7 + 36668*x^6 + 21267*x^5 - 45635*x^4 - 92185*x^3 - 30260*x^2 + 17764*x + 34621, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 30 x^{14} + 55 x^{13} + 285 x^{12} - 878 x^{11} - 527 x^{10} + 5950 x^{9} - 6675 x^{8} - 16515 x^{7} + 36668 x^{6} + 21267 x^{5} - 45635 x^{4} - 92185 x^{3} - 30260 x^{2} + 17764 x + 34621 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(59190897027263214111328125=3^{4}\cdot 5^{15}\cdot 41^{6}\cdot 71^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 41, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{623468429373601386615715535495208814059} a^{15} + \frac{44622351217993941525898746998733519150}{207822809791200462205238511831736271353} a^{14} - \frac{52602650211299353816797081993231862178}{207822809791200462205238511831736271353} a^{13} + \frac{240594206845015804207122639157790763538}{623468429373601386615715535495208814059} a^{12} + \frac{82696618951339501319567104935447917266}{623468429373601386615715535495208814059} a^{11} - \frac{299264907115588016619425737357276977127}{623468429373601386615715535495208814059} a^{10} + \frac{1645257686766052099004461523353626038}{207822809791200462205238511831736271353} a^{9} - \frac{1565450934370027682710109366833268279}{623468429373601386615715535495208814059} a^{8} + \frac{251571179052952527997094537577713461366}{623468429373601386615715535495208814059} a^{7} - \frac{277171514721299162767432408518057198557}{623468429373601386615715535495208814059} a^{6} - \frac{58726563538007793533484098486196831245}{207822809791200462205238511831736271353} a^{5} - \frac{53140173563267202200334248418384772006}{207822809791200462205238511831736271353} a^{4} - \frac{169101406972323016154650928638287320891}{623468429373601386615715535495208814059} a^{3} + \frac{15282508435142688127059351160092697564}{207822809791200462205238511831736271353} a^{2} - \frac{135562678230840281024812358509997410406}{623468429373601386615715535495208814059} a - \frac{141364261552818495896686888093602386152}{623468429373601386615715535495208814059}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2309466.52793 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1113:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 49 conjugacy class representatives for t16n1113
Character table for t16n1113 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.5125.1, 8.4.131328125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ $16$ R $16$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5Data not computed
$41$41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71Data not computed