Properties

Label 16.4.57681033264...3953.6
Degree $16$
Signature $[4, 6]$
Discriminant $17^{15}\cdot 67^{4}$
Root discriminant $40.74$
Ramified primes $17, 67$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 16T1223

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![42127, 31904, 18521, -10206, -18211, 15762, -18375, 17755, -7413, 3779, -1028, -130, 106, -105, 32, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 32*x^14 - 105*x^13 + 106*x^12 - 130*x^11 - 1028*x^10 + 3779*x^9 - 7413*x^8 + 17755*x^7 - 18375*x^6 + 15762*x^5 - 18211*x^4 - 10206*x^3 + 18521*x^2 + 31904*x + 42127)
 
gp: K = bnfinit(x^16 - 7*x^15 + 32*x^14 - 105*x^13 + 106*x^12 - 130*x^11 - 1028*x^10 + 3779*x^9 - 7413*x^8 + 17755*x^7 - 18375*x^6 + 15762*x^5 - 18211*x^4 - 10206*x^3 + 18521*x^2 + 31904*x + 42127, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} + 32 x^{14} - 105 x^{13} + 106 x^{12} - 130 x^{11} - 1028 x^{10} + 3779 x^{9} - 7413 x^{8} + 17755 x^{7} - 18375 x^{6} + 15762 x^{5} - 18211 x^{4} - 10206 x^{3} + 18521 x^{2} + 31904 x + 42127 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(57681033264163530732453953=17^{15}\cdot 67^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{27840340551070539591568494000615075784} a^{15} - \frac{58432582829159541997172486767559503}{6960085137767634897892123500153768946} a^{14} + \frac{615863611621528912810861636011030821}{3480042568883817448946061750076884473} a^{13} + \frac{4377557517737251201678362204818071207}{27840340551070539591568494000615075784} a^{12} - \frac{2823981112746382518618499648807722017}{27840340551070539591568494000615075784} a^{11} - \frac{13375573464749729544027528012075058525}{27840340551070539591568494000615075784} a^{10} - \frac{11398113278280888822159652968857275351}{27840340551070539591568494000615075784} a^{9} - \frac{6101954887342282482297080103333929}{207763735455750295459466373138918476} a^{8} + \frac{1361688808873015351269144596047097245}{27840340551070539591568494000615075784} a^{7} + \frac{4476161545455037788278640977946284859}{13920170275535269795784247000307537892} a^{6} - \frac{1665151596802972869924595311823585597}{27840340551070539591568494000615075784} a^{5} + \frac{5728598297116582570612552061819120447}{27840340551070539591568494000615075784} a^{4} - \frac{1887021306118345495763436869190555175}{13920170275535269795784247000307537892} a^{3} - \frac{3373845151536772303688238432435088741}{6960085137767634897892123500153768946} a^{2} + \frac{6736751861216657076989878777594997081}{27840340551070539591568494000615075784} a - \frac{1782833256350314735318803955715566805}{27840340551070539591568494000615075784}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 785787.99808 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1223:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1223
Character table for t16n1223 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ $16$ $16$ $16$ $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ $16$ $16$ $16$ $16$ $16$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
17Data not computed
67Data not computed