Normalized defining polynomial
\( x^{16} - 3 x^{15} + 9 x^{14} + 7 x^{13} - 38 x^{12} + 199 x^{11} - 36 x^{10} + 397 x^{9} - 1905 x^{8} - 3584 x^{7} - 655 x^{6} - 5770 x^{5} + 29839 x^{4} - 14853 x^{3} + 48758 x^{2} - 39480 x + 32743 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57681033264163530732453953=17^{15}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{1294} a^{14} - \frac{235}{1294} a^{13} - \frac{199}{1294} a^{12} + \frac{126}{647} a^{11} + \frac{148}{647} a^{10} + \frac{105}{1294} a^{9} - \frac{359}{1294} a^{8} - \frac{211}{1294} a^{7} + \frac{183}{647} a^{6} - \frac{276}{647} a^{5} - \frac{25}{1294} a^{4} - \frac{485}{1294} a^{3} + \frac{461}{1294} a^{2} - \frac{132}{647} a - \frac{237}{647}$, $\frac{1}{271659073565758143159242453760014} a^{15} - \frac{43812483073157900456721393810}{135829536782879071579621226880007} a^{14} + \frac{33310179695584340420765230260415}{271659073565758143159242453760014} a^{13} + \frac{18751755758230567173937748174407}{135829536782879071579621226880007} a^{12} + \frac{14625610384882619334054490378687}{271659073565758143159242453760014} a^{11} - \frac{21188094990002340263466820380882}{135829536782879071579621226880007} a^{10} - \frac{56337658176240558197959368504448}{135829536782879071579621226880007} a^{9} - \frac{50559697941276568356289221336327}{271659073565758143159242453760014} a^{8} + \frac{21683697013202316775937675360415}{135829536782879071579621226880007} a^{7} + \frac{103314085438023763998378032214371}{271659073565758143159242453760014} a^{6} - \frac{51853903399227655027129298791129}{135829536782879071579621226880007} a^{5} - \frac{4097573336455632517748789741607}{135829536782879071579621226880007} a^{4} - \frac{36727289467220706118044329545547}{271659073565758143159242453760014} a^{3} - \frac{63726343660155232657623866972203}{135829536782879071579621226880007} a^{2} - \frac{104765347799977010315805040288553}{271659073565758143159242453760014} a + \frac{110905509041209733806953453203201}{271659073565758143159242453760014}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 431395.176696 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||