Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} + 26 x^{13} - 69 x^{12} + 138 x^{11} - 208 x^{10} - 60 x^{9} + x^{8} - 3606 x^{7} + 684 x^{6} - 127 x^{5} + 11899 x^{4} - 2310 x^{3} + 32891 x^{2} - 16142 x + 31247 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57681033264163530732453953=17^{15}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2252870497972659603429586297933699507} a^{15} - \frac{318288795570154304249140997665428498}{2252870497972659603429586297933699507} a^{14} - \frac{839616531774346261309872079284021437}{2252870497972659603429586297933699507} a^{13} - \frac{494490230923600880358118662004220701}{2252870497972659603429586297933699507} a^{12} - \frac{1114614965187481315219202266559387753}{2252870497972659603429586297933699507} a^{11} + \frac{172253887250751649030910979009293680}{2252870497972659603429586297933699507} a^{10} - \frac{1077275670478459626996283615109504366}{2252870497972659603429586297933699507} a^{9} - \frac{94136616664207168223211231294992907}{2252870497972659603429586297933699507} a^{8} + \frac{762436818531767137198598174333626021}{2252870497972659603429586297933699507} a^{7} - \frac{482037586340300772738820155653723710}{2252870497972659603429586297933699507} a^{6} + \frac{345218788704438229456498325165814682}{2252870497972659603429586297933699507} a^{5} - \frac{136715858449323218148800463834623299}{2252870497972659603429586297933699507} a^{4} - \frac{1007882522297578134527588300671788784}{2252870497972659603429586297933699507} a^{3} + \frac{557417484203212907292454720245322061}{2252870497972659603429586297933699507} a^{2} + \frac{1005556970315189608202267890460828730}{2252870497972659603429586297933699507} a + \frac{304053046265997287403577033274044369}{2252870497972659603429586297933699507}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 667439.049422 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||