Properties

Label 16.4.57120348551...8125.1
Degree $16$
Signature $[4, 6]$
Discriminant $5^{12}\cdot 29^{4}\cdot 149^{3}$
Root discriminant $19.83$
Ramified primes $5, 29, 149$
Class number $1$
Class group Trivial
Galois group 16T972

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -9, 6, 57, -80, -128, 137, -76, -133, 56, 37, -27, 1, 11, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 11*x^14 + x^13 - 27*x^12 + 37*x^11 + 56*x^10 - 133*x^9 - 76*x^8 + 137*x^7 - 128*x^6 - 80*x^5 + 57*x^4 + 6*x^3 - 9*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^16 - 5*x^15 + 11*x^14 + x^13 - 27*x^12 + 37*x^11 + 56*x^10 - 133*x^9 - 76*x^8 + 137*x^7 - 128*x^6 - 80*x^5 + 57*x^4 + 6*x^3 - 9*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 11 x^{14} + x^{13} - 27 x^{12} + 37 x^{11} + 56 x^{10} - 133 x^{9} - 76 x^{8} + 137 x^{7} - 128 x^{6} - 80 x^{5} + 57 x^{4} + 6 x^{3} - 9 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(571203485514892578125=5^{12}\cdot 29^{4}\cdot 149^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 149$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{774057636307831} a^{15} + \frac{21210992897949}{774057636307831} a^{14} - \frac{158187951407756}{774057636307831} a^{13} - \frac{6699946744626}{40739875595149} a^{12} - \frac{225412317433574}{774057636307831} a^{11} + \frac{107461661941739}{774057636307831} a^{10} + \frac{372100088050368}{774057636307831} a^{9} + \frac{386168458283823}{774057636307831} a^{8} + \frac{58033372881944}{774057636307831} a^{7} + \frac{385487440998141}{774057636307831} a^{6} + \frac{269913547212916}{774057636307831} a^{5} + \frac{188124858334782}{774057636307831} a^{4} - \frac{255340866450480}{774057636307831} a^{3} + \frac{1620823014869}{774057636307831} a^{2} + \frac{168478580603365}{774057636307831} a - \frac{286600386797744}{774057636307831}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8481.74241489 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T972:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 35 conjugacy class representatives for t16n972
Character table for t16n972 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.78318125.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$149$$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.1.2$x^{2} + 298$$2$$1$$1$$C_2$$[\ ]_{2}$
149.4.2.1$x^{4} + 745 x^{2} + 199809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$