Normalized defining polynomial
\( x^{16} - 8 x^{15} - x^{14} + 147 x^{13} - 312 x^{12} + 1237 x^{11} - 11210 x^{10} + 9261 x^{9} - 21833 x^{8} + 166391 x^{7} + 39783 x^{6} + 395156 x^{5} + 264039 x^{4} + 662650 x^{3} + 586484 x^{2} + 296055 x - 212671 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5614886866882301027209678756129=23^{6}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{12} + \frac{3}{20} a^{11} - \frac{1}{4} a^{10} - \frac{1}{20} a^{9} + \frac{1}{20} a^{8} - \frac{1}{20} a^{7} + \frac{1}{20} a^{6} + \frac{1}{10} a^{5} - \frac{1}{10} a^{4} - \frac{1}{5} a^{3} + \frac{1}{10} a^{2} - \frac{1}{4} a - \frac{9}{20}$, $\frac{1}{20} a^{14} + \frac{1}{10} a^{12} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} + \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{20} a^{6} + \frac{3}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{7}{20} a^{2} + \frac{3}{10} a - \frac{1}{20}$, $\frac{1}{5084829827112976071450459371120027148947096620} a^{15} - \frac{21595422862160974007977310788942104297983993}{1016965965422595214290091874224005429789419324} a^{14} - \frac{2523401886707832935981932568958076003809952}{254241491355648803572522968556001357447354831} a^{13} - \frac{44304199972008476062537921858463680474613127}{1016965965422595214290091874224005429789419324} a^{12} + \frac{71453581634145692892266334424227075491954167}{1271207456778244017862614842780006787236774155} a^{11} - \frac{597094853044853025792575291504147336674896443}{5084829827112976071450459371120027148947096620} a^{10} - \frac{178960585464748635140278436395645907116048}{6871391658260778474933053204216252903982563} a^{9} - \frac{198093117898138456453108514569381135117709869}{1016965965422595214290091874224005429789419324} a^{8} - \frac{249834237848489237300687683838472291806468857}{5084829827112976071450459371120027148947096620} a^{7} - \frac{474439252110895213030955796860435206804140953}{2542414913556488035725229685560013574473548310} a^{6} - \frac{126535011501687113616204352554882551998416403}{2542414913556488035725229685560013574473548310} a^{5} - \frac{19282599782992009345609515535136546114647379}{508482982711297607145045937112002714894709662} a^{4} + \frac{40391492191515476093723564643015124832021111}{164026768616547615208079334552258940288616020} a^{3} + \frac{1726706142517584589631394547771669945845254187}{5084829827112976071450459371120027148947096620} a^{2} + \frac{848239030354539303620750514974074655290531169}{5084829827112976071450459371120027148947096620} a + \frac{1018383881005150148567740177652818801417756059}{2542414913556488035725229685560013574473548310}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 191680973.532 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.2.38663.1, 4.2.1585183.1, 8.4.103025010883049.2 x2, 8.4.2512805143489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |