Properties

Label 16.4.55712155397...7184.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{44}\cdot 3^{8}\cdot 13^{6}$
Root discriminant $30.49$
Ramified primes $2, 3, 13$
Class number $1$
Class group Trivial
Galois group 16T1220

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-578, 3264, -7464, 9152, -7528, 6192, -5620, 4112, -2088, 568, -44, -40, 78, -12, 16, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 16*x^14 - 12*x^13 + 78*x^12 - 40*x^11 - 44*x^10 + 568*x^9 - 2088*x^8 + 4112*x^7 - 5620*x^6 + 6192*x^5 - 7528*x^4 + 9152*x^3 - 7464*x^2 + 3264*x - 578)
 
gp: K = bnfinit(x^16 + 16*x^14 - 12*x^13 + 78*x^12 - 40*x^11 - 44*x^10 + 568*x^9 - 2088*x^8 + 4112*x^7 - 5620*x^6 + 6192*x^5 - 7528*x^4 + 9152*x^3 - 7464*x^2 + 3264*x - 578, 1)
 

Normalized defining polynomial

\( x^{16} + 16 x^{14} - 12 x^{13} + 78 x^{12} - 40 x^{11} - 44 x^{10} + 568 x^{9} - 2088 x^{8} + 4112 x^{7} - 5620 x^{6} + 6192 x^{5} - 7528 x^{4} + 9152 x^{3} - 7464 x^{2} + 3264 x - 578 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(557121553975260619997184=2^{44}\cdot 3^{8}\cdot 13^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{867} a^{14} - \frac{334}{867} a^{13} + \frac{52}{867} a^{12} - \frac{138}{289} a^{11} - \frac{43}{867} a^{10} + \frac{82}{289} a^{9} + \frac{140}{867} a^{8} + \frac{320}{867} a^{7} + \frac{410}{867} a^{6} + \frac{10}{867} a^{5} + \frac{356}{867} a^{4} - \frac{80}{289} a^{3} + \frac{116}{289} a^{2} + \frac{71}{867} a - \frac{16}{51}$, $\frac{1}{1356387027179607700479} a^{15} + \frac{482672096333973388}{1356387027179607700479} a^{14} + \frac{626130739636305033944}{1356387027179607700479} a^{13} + \frac{401499184384874559245}{1356387027179607700479} a^{12} + \frac{527095991665375391714}{1356387027179607700479} a^{11} - \frac{424657662932577151853}{1356387027179607700479} a^{10} - \frac{615615233820821499322}{1356387027179607700479} a^{9} - \frac{72009823529289532009}{150709669686623077831} a^{8} + \frac{4989665403998032885}{26595824062345249029} a^{7} - \frac{20621324620278563465}{79787472187035747087} a^{6} - \frac{7285997627869592515}{79787472187035747087} a^{5} - \frac{502720214191228816130}{1356387027179607700479} a^{4} - \frac{12618520843382912136}{150709669686623077831} a^{3} + \frac{374477983043562014912}{1356387027179607700479} a^{2} + \frac{543387765068261444408}{1356387027179607700479} a + \frac{14953293349587798679}{79787472187035747087}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 644606.422594 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1220:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 55 conjugacy class representatives for t16n1220 are not computed
Character table for t16n1220 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), 4.4.29952.1, 4.4.7488.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.3588489216.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$