Normalized defining polynomial
\( x^{16} - 6 x^{15} + 62 x^{13} - 422 x^{12} + 2942 x^{11} - 15204 x^{10} + 64178 x^{9} - 227924 x^{8} + 739742 x^{7} - 2032096 x^{6} + 4655210 x^{5} - 9192746 x^{4} + 15503434 x^{3} - 20821468 x^{2} + 17185382 x - 5372621 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(545664914012032080281600000000=2^{24}\cdot 5^{8}\cdot 13^{6}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a$, $\frac{1}{248} a^{14} + \frac{1}{124} a^{13} - \frac{9}{248} a^{12} + \frac{1}{124} a^{11} + \frac{5}{248} a^{10} + \frac{9}{124} a^{9} + \frac{5}{248} a^{8} + \frac{4}{31} a^{7} - \frac{5}{248} a^{6} - \frac{7}{124} a^{5} + \frac{29}{248} a^{4} - \frac{49}{124} a^{3} - \frac{89}{248} a^{2} + \frac{13}{124} a + \frac{7}{248}$, $\frac{1}{659612592739699601329801199987722393718632} a^{15} - \frac{4704279752174210541677672674458257139}{164903148184924900332450299996930598429658} a^{14} - \frac{34569875428382791566923207049634707785451}{659612592739699601329801199987722393718632} a^{13} - \frac{15557649433632790580743875780031809796801}{329806296369849800664900599993861196859316} a^{12} - \frac{26592029395946584251020784195042960574117}{659612592739699601329801199987722393718632} a^{11} - \frac{37397952389801737890658511896684416280}{1070799663538473378782144805174874015777} a^{10} - \frac{9002263309720094734764306565368400463041}{94230370391385657332828742855388913388376} a^{9} - \frac{3037714286702782025520089446764957031615}{329806296369849800664900599993861196859316} a^{8} + \frac{1996952526306528485394976552174342626493}{94230370391385657332828742855388913388376} a^{7} + \frac{21758751265924394651614081361383044222043}{164903148184924900332450299996930598429658} a^{6} + \frac{25083569530052398796140861294057624737471}{659612592739699601329801199987722393718632} a^{5} + \frac{279654920293784455823502769512366054325}{2372707168128415832121587050315548178844} a^{4} + \frac{94867089177513126160865650455079825262417}{659612592739699601329801199987722393718632} a^{3} + \frac{3359202866770948761851451170733457948908}{7495597644769313651475013636224118110439} a^{2} - \frac{100363336752233260463053018505301018869773}{659612592739699601329801199987722393718632} a + \frac{148358249276518838170716699305519654148897}{329806296369849800664900599993861196859316}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85844127.0895 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1558 are not computed |
| Character table for t16n1558 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.659478560000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 13.8.6.3 | $x^{8} + 65 x^{4} + 1352$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |