Properties

Label 16.4.53578799887...3125.1
Degree $16$
Signature $[4, 6]$
Discriminant $3^{8}\cdot 5^{12}\cdot 181^{2}\cdot 1021$
Root discriminant $17.10$
Ramified primes $3, 5, 181, 1021$
Class number $1$
Class group Trivial
Galois group 16T1771

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -7, 14, -9, 6, -1, 40, -45, 42, -10, 10, -27, 26, -12, 6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 6*x^14 - 12*x^13 + 26*x^12 - 27*x^11 + 10*x^10 - 10*x^9 + 42*x^8 - 45*x^7 + 40*x^6 - x^5 + 6*x^4 - 9*x^3 + 14*x^2 - 7*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 6*x^14 - 12*x^13 + 26*x^12 - 27*x^11 + 10*x^10 - 10*x^9 + 42*x^8 - 45*x^7 + 40*x^6 - x^5 + 6*x^4 - 9*x^3 + 14*x^2 - 7*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 6 x^{14} - 12 x^{13} + 26 x^{12} - 27 x^{11} + 10 x^{10} - 10 x^{9} + 42 x^{8} - 45 x^{7} + 40 x^{6} - x^{5} + 6 x^{4} - 9 x^{3} + 14 x^{2} - 7 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(53578799887939453125=3^{8}\cdot 5^{12}\cdot 181^{2}\cdot 1021\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 181, 1021$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{57} a^{14} - \frac{5}{19} a^{13} - \frac{4}{57} a^{12} - \frac{22}{57} a^{11} - \frac{1}{57} a^{10} + \frac{5}{19} a^{9} + \frac{20}{57} a^{8} - \frac{5}{57} a^{7} + \frac{17}{57} a^{6} + \frac{16}{57} a^{5} + \frac{8}{19} a^{4} + \frac{13}{57} a^{3} - \frac{5}{57} a^{2} - \frac{2}{19} a - \frac{14}{57}$, $\frac{1}{55285953} a^{15} + \frac{150299}{55285953} a^{14} + \frac{2684051}{55285953} a^{13} + \frac{7532232}{18428651} a^{12} - \frac{5724243}{18428651} a^{11} - \frac{13286576}{55285953} a^{10} + \frac{142817}{2909787} a^{9} - \frac{900322}{2909787} a^{8} + \frac{15067429}{55285953} a^{7} - \frac{9381016}{55285953} a^{6} - \frac{11970295}{55285953} a^{5} + \frac{25738}{2909787} a^{4} + \frac{84684}{18428651} a^{3} + \frac{20981384}{55285953} a^{2} - \frac{11754926}{55285953} a - \frac{7074055}{55285953}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3403.82647153 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1771:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 190 conjugacy class representatives for t16n1771 are not computed
Character table for t16n1771 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.4.229078125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ R R $16$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5Data not computed
181Data not computed
1021Data not computed