Normalized defining polynomial
\( x^{16} + 14 x^{14} - 41 x^{12} - 92 x^{10} - 2731 x^{8} - 24264 x^{6} - 13149 x^{4} - 30618 x^{2} + 35721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5305550361918544281600000000=2^{32}\cdot 3^{6}\cdot 5^{8}\cdot 7^{2}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{3}{10} a^{6} - \frac{1}{2} a^{4} - \frac{1}{10} a^{2} - \frac{1}{10}$, $\frac{1}{10} a^{9} - \frac{3}{10} a^{7} - \frac{1}{2} a^{5} - \frac{1}{10} a^{3} - \frac{1}{10} a$, $\frac{1}{30} a^{10} - \frac{1}{30} a^{8} - \frac{11}{30} a^{6} - \frac{11}{30} a^{4} - \frac{13}{30} a^{2} - \frac{2}{5}$, $\frac{1}{90} a^{11} - \frac{2}{45} a^{9} - \frac{16}{45} a^{7} + \frac{17}{45} a^{5} - \frac{4}{9} a^{3} - \frac{1}{10} a$, $\frac{1}{2700} a^{12} - \frac{1}{180} a^{11} - \frac{11}{1350} a^{10} + \frac{1}{45} a^{9} + \frac{49}{2700} a^{8} - \frac{29}{90} a^{7} - \frac{587}{2700} a^{6} + \frac{14}{45} a^{5} - \frac{1147}{2700} a^{4} + \frac{2}{9} a^{3} - \frac{11}{150} a^{2} + \frac{1}{20} a + \frac{49}{100}$, $\frac{1}{2700} a^{13} - \frac{7}{2700} a^{11} - \frac{11}{2700} a^{9} - \frac{1}{20} a^{8} + \frac{283}{2700} a^{7} - \frac{7}{20} a^{6} + \frac{713}{2700} a^{5} + \frac{1}{4} a^{4} - \frac{133}{450} a^{3} - \frac{9}{20} a^{2} + \frac{11}{25} a + \frac{1}{20}$, $\frac{1}{94470354423900} a^{14} + \frac{81522017}{13495764917700} a^{12} - \frac{228949726403}{94470354423900} a^{10} - \frac{1}{20} a^{9} + \frac{335799188299}{7266950340300} a^{8} - \frac{7}{20} a^{7} - \frac{884926509559}{94470354423900} a^{6} + \frac{1}{4} a^{5} + \frac{49483951073}{629802362826} a^{4} - \frac{9}{20} a^{3} + \frac{38276707127}{349890201570} a^{2} + \frac{1}{20} a - \frac{16650035029}{41653595425}$, $\frac{1}{283411063271700} a^{15} + \frac{1269988367}{10121823688275} a^{13} + \frac{143949434302}{70852765817925} a^{11} - \frac{1}{60} a^{10} - \frac{74347751039}{2180085102090} a^{9} - \frac{1}{30} a^{8} + \frac{1884306585661}{141705531635850} a^{7} + \frac{1}{3} a^{6} - \frac{8182996338091}{31490118141300} a^{5} + \frac{13}{30} a^{4} - \frac{928265109389}{5248353023550} a^{3} - \frac{7}{30} a^{2} - \frac{13325349489}{41653595425} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25289623.6407 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 133 conjugacy class representatives for t16n1547 are not computed |
| Character table for t16n1547 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.216783360000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |