Properties

Label 16.4.52265326666...3125.2
Degree $16$
Signature $[4, 6]$
Discriminant $3^{6}\cdot 5^{11}\cdot 59^{8}$
Root discriminant $35.07$
Ramified primes $3, 5, 59$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T937

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1225, 3325, -8885, 3560, 889, 1633, -1506, -798, 467, 212, -70, -81, 23, 6, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 4*x^14 + 6*x^13 + 23*x^12 - 81*x^11 - 70*x^10 + 212*x^9 + 467*x^8 - 798*x^7 - 1506*x^6 + 1633*x^5 + 889*x^4 + 3560*x^3 - 8885*x^2 + 3325*x + 1225)
 
gp: K = bnfinit(x^16 - 4*x^15 + 4*x^14 + 6*x^13 + 23*x^12 - 81*x^11 - 70*x^10 + 212*x^9 + 467*x^8 - 798*x^7 - 1506*x^6 + 1633*x^5 + 889*x^4 + 3560*x^3 - 8885*x^2 + 3325*x + 1225, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 4 x^{14} + 6 x^{13} + 23 x^{12} - 81 x^{11} - 70 x^{10} + 212 x^{9} + 467 x^{8} - 798 x^{7} - 1506 x^{6} + 1633 x^{5} + 889 x^{4} + 3560 x^{3} - 8885 x^{2} + 3325 x + 1225 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5226532666677246533203125=3^{6}\cdot 5^{11}\cdot 59^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 59$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{15} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{7}{15} a^{10} - \frac{1}{15} a^{9} + \frac{1}{3} a^{8} + \frac{2}{15} a^{7} + \frac{2}{15} a^{6} - \frac{1}{5} a^{5} + \frac{4}{15} a^{4} - \frac{7}{15} a^{3} - \frac{1}{15} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{4073599374850365226049885835} a^{15} - \frac{658658899548727863440827}{271573291656691015069992389} a^{14} + \frac{298498676032295807217026646}{1357866458283455075349961945} a^{13} - \frac{65442709422686142289226496}{1357866458283455075349961945} a^{12} + \frac{1353376909914569455750792547}{4073599374850365226049885835} a^{11} + \frac{1680784909231484724312603731}{4073599374850365226049885835} a^{10} - \frac{100213303082254076807240392}{581942767835766460864269405} a^{9} + \frac{727283064704762838113233142}{4073599374850365226049885835} a^{8} - \frac{215771061028597707286205894}{814719874970073045209977167} a^{7} - \frac{18761711678651478015226105}{38796184522384430724284627} a^{6} + \frac{621468678558129441178936432}{4073599374850365226049885835} a^{5} + \frac{621882367016631309373568324}{4073599374850365226049885835} a^{4} + \frac{178566132043988001593485148}{581942767835766460864269405} a^{3} - \frac{390603399180392470225773784}{4073599374850365226049885835} a^{2} + \frac{394174293565982561764227929}{814719874970073045209977167} a - \frac{7967227462860115535259092}{38796184522384430724284627}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2345624.35957 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T937:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n937
Character table for t16n937 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.1475.1, 8.4.340800778125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$59$59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.8.4.1$x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$