Properties

Label 16.4.52265326666...3125.1
Degree $16$
Signature $[4, 6]$
Discriminant $3^{6}\cdot 5^{11}\cdot 59^{8}$
Root discriminant $35.07$
Ramified primes $3, 5, 59$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T937

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 34, -79, 139, 547, -275, -531, 766, -105, -589, 576, -283, 64, -13, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 8*x^14 - 13*x^13 + 64*x^12 - 283*x^11 + 576*x^10 - 589*x^9 - 105*x^8 + 766*x^7 - 531*x^6 - 275*x^5 + 547*x^4 + 139*x^3 - 79*x^2 + 34*x - 11)
 
gp: K = bnfinit(x^16 - 4*x^15 + 8*x^14 - 13*x^13 + 64*x^12 - 283*x^11 + 576*x^10 - 589*x^9 - 105*x^8 + 766*x^7 - 531*x^6 - 275*x^5 + 547*x^4 + 139*x^3 - 79*x^2 + 34*x - 11, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 8 x^{14} - 13 x^{13} + 64 x^{12} - 283 x^{11} + 576 x^{10} - 589 x^{9} - 105 x^{8} + 766 x^{7} - 531 x^{6} - 275 x^{5} + 547 x^{4} + 139 x^{3} - 79 x^{2} + 34 x - 11 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5226532666677246533203125=3^{6}\cdot 5^{11}\cdot 59^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 59$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} + \frac{15}{31} a^{13} - \frac{8}{31} a^{12} + \frac{1}{31} a^{11} + \frac{11}{31} a^{10} - \frac{3}{31} a^{9} - \frac{2}{31} a^{8} - \frac{3}{31} a^{7} + \frac{6}{31} a^{6} - \frac{15}{31} a^{5} + \frac{13}{31} a^{4} - \frac{8}{31} a^{3} - \frac{15}{31} a^{2} - \frac{1}{31} a + \frac{15}{31}$, $\frac{1}{8580459435425562559} a^{15} + \frac{39334718698344122}{8580459435425562559} a^{14} + \frac{400067724032050541}{8580459435425562559} a^{13} - \frac{59050107463934280}{8580459435425562559} a^{12} + \frac{550190139126447386}{1225779919346508937} a^{11} + \frac{286168079700670381}{8580459435425562559} a^{10} + \frac{4158431564553515122}{8580459435425562559} a^{9} - \frac{2214293919050058736}{8580459435425562559} a^{8} - \frac{3101069498723771304}{8580459435425562559} a^{7} + \frac{1847704314174368651}{8580459435425562559} a^{6} - \frac{445715077740607736}{8580459435425562559} a^{5} + \frac{385248939518666123}{1225779919346508937} a^{4} - \frac{272384356641917309}{8580459435425562559} a^{3} - \frac{16209592273129294}{1225779919346508937} a^{2} + \frac{2928674400225862076}{8580459435425562559} a + \frac{2085730637181548452}{8580459435425562559}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3361271.16649 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T937:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n937
Character table for t16n937 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.1475.1, 8.4.340800778125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
$59$59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.8.4.1$x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$