Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 33 x^{12} - 166 x^{11} + 1629 x^{10} - 5670 x^{9} + 3020 x^{8} + 18398 x^{7} - 30968 x^{6} + 8343 x^{5} + 115074 x^{4} - 213083 x^{3} - 264567 x^{2} + 368010 x - 59643 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51952739971213319841055446889=7^{8}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{1066722485934169557} a^{14} - \frac{7}{1066722485934169557} a^{13} + \frac{2999464197364744}{1066722485934169557} a^{12} - \frac{17996785184188373}{1066722485934169557} a^{11} - \frac{64974481750028567}{1066722485934169557} a^{10} + \frac{14918753069682915}{118524720659352173} a^{9} - \frac{118615164572590871}{355574161978056519} a^{8} + \frac{139934890694047075}{355574161978056519} a^{7} - \frac{393984551346168862}{1066722485934169557} a^{6} - \frac{165502686749403446}{1066722485934169557} a^{5} + \frac{343069682381347994}{1066722485934169557} a^{4} - \frac{288049309851853852}{1066722485934169557} a^{3} + \frac{122629917934756577}{1066722485934169557} a^{2} + \frac{87860264792219648}{355574161978056519} a + \frac{1101099710332127}{2521802567220259}$, $\frac{1}{17907070371376904353359} a^{15} + \frac{8386}{17907070371376904353359} a^{14} - \frac{108802694101087988821}{17907070371376904353359} a^{13} + \frac{244131171465884174770}{5969023457125634784453} a^{12} + \frac{347042724193260155017}{5969023457125634784453} a^{11} + \frac{40789662389474526716}{17907070371376904353359} a^{10} - \frac{724625788783133343872}{5969023457125634784453} a^{9} + \frac{634414475692685203220}{1989674485708544928151} a^{8} - \frac{5229431368855796082622}{17907070371376904353359} a^{7} - \frac{6803594151027352470058}{17907070371376904353359} a^{6} - \frac{1780208132543202001703}{17907070371376904353359} a^{5} - \frac{2538440007234519413992}{5969023457125634784453} a^{4} + \frac{551148117690446676608}{1989674485708544928151} a^{3} + \frac{8161247448814668211288}{17907070371376904353359} a^{2} + \frac{511065716280234332968}{5969023457125634784453} a - \frac{10113304834597945914}{42333499695926487833}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 870646429.869 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.4.2481997.1, 4.2.354571.1, 4.2.9583.1, 8.4.227931436996333.1 x2, 8.4.6160309108009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37 | Data not computed | ||||||