Normalized defining polynomial
\( x^{16} - 3 x^{15} + 6 x^{14} + 4 x^{13} - 14 x^{12} - 23 x^{11} + 77 x^{10} - 169 x^{9} - 516 x^{8} + 1055 x^{7} - 3904 x^{6} + 3377 x^{5} - 1410 x^{4} - 1529 x^{3} + 1435 x^{2} - 312 x - 11 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51371070174496900000000=2^{8}\cdot 5^{8}\cdot 283^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 283$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{212} a^{14} + \frac{19}{212} a^{13} - \frac{45}{212} a^{12} + \frac{67}{212} a^{11} + \frac{93}{212} a^{10} + \frac{17}{53} a^{9} - \frac{17}{53} a^{8} - \frac{61}{212} a^{7} - \frac{35}{106} a^{6} - \frac{18}{53} a^{5} - \frac{3}{106} a^{4} - \frac{87}{212} a^{3} - \frac{43}{106} a^{2} + \frac{35}{106} a + \frac{61}{212}$, $\frac{1}{57119473443810053653667528} a^{15} - \frac{14450954290154633133504}{7139934180476256706708441} a^{14} - \frac{311280894240196111260661}{28559736721905026826833764} a^{13} + \frac{9884224399100669621466359}{28559736721905026826833764} a^{12} + \frac{2068896151348446433010839}{14279868360952513413416882} a^{11} - \frac{18741419754575902516502851}{57119473443810053653667528} a^{10} - \frac{3047851917910999857578751}{14279868360952513413416882} a^{9} - \frac{2857381486300314224748165}{57119473443810053653667528} a^{8} + \frac{1916389695442769594025843}{8159924777687150521952504} a^{7} - \frac{102013337600228200416177}{1679984513053236872166692} a^{6} + \frac{10488237640372559285545345}{28559736721905026826833764} a^{5} - \frac{2606624229252066093558231}{8159924777687150521952504} a^{4} - \frac{11189216913694411331719269}{57119473443810053653667528} a^{3} - \frac{2833804789917236458332402}{7139934180476256706708441} a^{2} - \frac{12630280871844233344800197}{57119473443810053653667528} a + \frac{2511928467058009245823809}{57119473443810053653667528}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 131295.094957 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 78 conjugacy class representatives for t16n1665 are not computed |
| Character table for t16n1665 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.283.1, 8.4.50055625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.3 | $x^{8} + 2 x^{7} + 2 x^{6} + 16$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| 283 | Data not computed | ||||||