Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} - 12 x^{13} + 25 x^{12} - 10 x^{11} - 15 x^{10} - 36 x^{9} + 83 x^{8} + \cdots - 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(513114342400000000\) \(\medspace = 2^{16}\cdot 5^{8}\cdot 11^{4}\cdot 37^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.79\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(5\), \(11\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{714194109}a^{15}+\frac{53675077}{714194109}a^{14}+\frac{64179110}{714194109}a^{13}+\frac{59201113}{714194109}a^{12}-\frac{10977509}{238064703}a^{11}+\frac{76503227}{714194109}a^{10}+\frac{26568043}{714194109}a^{9}-\frac{230315488}{714194109}a^{8}-\frac{26717602}{79354901}a^{7}+\frac{197563781}{714194109}a^{6}-\frac{52833233}{714194109}a^{5}+\frac{347822080}{714194109}a^{4}+\frac{66767962}{714194109}a^{3}-\frac{276819460}{714194109}a^{2}+\frac{135604225}{714194109}a-\frac{90622693}{714194109}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{93382436}{714194109}a^{15}-\frac{516225034}{714194109}a^{14}+\frac{1057374247}{714194109}a^{13}-\frac{1767220525}{714194109}a^{12}+\frac{1269809591}{238064703}a^{11}-\frac{3833188649}{714194109}a^{10}-\frac{1060768831}{714194109}a^{9}-\frac{1371015518}{714194109}a^{8}+\frac{1498308909}{79354901}a^{7}-\frac{8668485347}{714194109}a^{6}-\frac{11669782792}{714194109}a^{5}+\frac{12051100778}{714194109}a^{4}+\frac{1086069437}{714194109}a^{3}-\frac{2565441464}{714194109}a^{2}-\frac{68549632}{714194109}a-\frac{413550722}{714194109}$, $\frac{111134804}{714194109}a^{15}-\frac{8073664}{714194109}a^{14}-\frac{914451812}{714194109}a^{13}+\frac{833742398}{714194109}a^{12}-\frac{743164684}{238064703}a^{11}+\frac{8800940122}{714194109}a^{10}-\frac{4174617844}{714194109}a^{9}-\frac{7523258741}{714194109}a^{8}-\frac{1071523004}{79354901}a^{7}+\frac{28263590524}{714194109}a^{6}-\frac{4109043196}{714194109}a^{5}-\frac{18253095229}{714194109}a^{4}+\frac{7547060072}{714194109}a^{3}+\frac{1910461186}{714194109}a^{2}-\frac{909107464}{714194109}a+\frac{844301839}{714194109}$, $\frac{91585642}{714194109}a^{15}-\frac{228437030}{714194109}a^{14}+\frac{341022374}{714194109}a^{13}-\frac{1187063678}{714194109}a^{12}+\frac{503083969}{238064703}a^{11}-\frac{575507221}{714194109}a^{10}+\frac{1944193132}{714194109}a^{9}-\frac{3090200788}{714194109}a^{8}+\frac{190818927}{79354901}a^{7}-\frac{2759701447}{714194109}a^{6}+\frac{2369186110}{714194109}a^{5}+\frac{2979769708}{714194109}a^{4}-\frac{3288761552}{714194109}a^{3}-\frac{1223961094}{714194109}a^{2}+\frac{1535822158}{714194109}a+\frac{68390501}{714194109}$, $\frac{162243715}{714194109}a^{15}-\frac{554572019}{714194109}a^{14}+\frac{656352449}{714194109}a^{13}-\frac{1662023756}{714194109}a^{12}+\frac{1144818559}{238064703}a^{11}-\frac{209587471}{714194109}a^{10}-\frac{1265028812}{714194109}a^{9}-\frac{8974391014}{714194109}a^{8}+\frac{1081465303}{79354901}a^{7}+\frac{5224036508}{714194109}a^{6}-\frac{5884957880}{714194109}a^{5}-\frac{4688203085}{714194109}a^{4}+\frac{3067555966}{714194109}a^{3}+\frac{1811157848}{714194109}a^{2}+\frac{158064862}{714194109}a-\frac{376986712}{714194109}$, $a$, $\frac{7952824}{714194109}a^{15}-\frac{379023089}{714194109}a^{14}+\frac{1346951027}{714194109}a^{13}-\frac{2150182958}{714194109}a^{12}+\frac{1605042853}{238064703}a^{11}-\frac{8832664597}{714194109}a^{10}+\frac{4498990981}{714194109}a^{9}+\frac{95302847}{714194109}a^{8}+\frac{1566187968}{79354901}a^{7}-\frac{24919432603}{714194109}a^{6}+\frac{5559971542}{714194109}a^{5}+\frac{15440044930}{714194109}a^{4}-\frac{10183610921}{714194109}a^{3}-\frac{960297739}{714194109}a^{2}+\frac{2002103182}{714194109}a-\frac{911143279}{714194109}$, $\frac{634508387}{714194109}a^{15}-\frac{2294518081}{714194109}a^{14}+\frac{3177383785}{714194109}a^{13}-\frac{7085713360}{714194109}a^{12}+\frac{4595399783}{238064703}a^{11}-\frac{3230969675}{714194109}a^{10}-\frac{7377079237}{714194109}a^{9}-\frac{23611384307}{714194109}a^{8}+\frac{4638812318}{79354901}a^{7}+\frac{7495328113}{714194109}a^{6}-\frac{41394003784}{714194109}a^{5}+\frac{14263941728}{714194109}a^{4}+\frac{7890161945}{714194109}a^{3}-\frac{5007118430}{714194109}a^{2}+\frac{2012477318}{714194109}a-\frac{471031748}{714194109}$, $\frac{135347929}{714194109}a^{15}-\frac{533646827}{714194109}a^{14}+\frac{931463942}{714194109}a^{13}-\frac{2071923524}{714194109}a^{12}+\frac{1318840924}{238064703}a^{11}-\frac{2834213059}{714194109}a^{10}+\frac{825299833}{714194109}a^{9}-\frac{5507481316}{714194109}a^{8}+\frac{1140645669}{79354901}a^{7}-\frac{4496889415}{714194109}a^{6}-\frac{3009338393}{714194109}a^{5}+\frac{4322071615}{714194109}a^{4}-\frac{4796576675}{714194109}a^{3}+\frac{1585008383}{714194109}a^{2}+\frac{2282722729}{714194109}a-\frac{621581200}{714194109}$, $\frac{152059679}{238064703}a^{15}-\frac{536155183}{238064703}a^{14}+\frac{646586335}{238064703}a^{13}-\frac{1449637828}{238064703}a^{12}+\frac{989716479}{79354901}a^{11}+\frac{145389427}{238064703}a^{10}-\frac{2780295661}{238064703}a^{9}-\frac{6191166521}{238064703}a^{8}+\frac{3195778089}{79354901}a^{7}+\frac{5261499802}{238064703}a^{6}-\frac{11562380833}{238064703}a^{5}+\frac{1005412262}{238064703}a^{4}+\frac{4237809836}{238064703}a^{3}-\frac{1296257243}{238064703}a^{2}-\frac{45125230}{238064703}a+\frac{385210354}{238064703}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 278.178633436 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 278.178633436 \cdot 1}{2\cdot\sqrt{513114342400000000}}\cr\approx \mathstrut & 0.191155099982 \end{aligned}\]
Galois group
$C_2^7.C_2\wr D_4$ (as 16T1772):
A solvable group of order 16384 |
The 148 conjugacy class representatives for $C_2^7.C_2\wr D_4$ |
Character table for $C_2^7.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.275.1, 8.2.19360000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $16$ | $2$ | $8$ | $16$ | |||
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(11\) | 11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(37\) | 37.2.0.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
37.2.0.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
37.4.0.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
37.4.2.1 | $x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
37.4.0.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |