Normalized defining polynomial
\( x^{16} - 6 x^{15} + 104 x^{14} - 359 x^{13} + 2355 x^{12} - 2888 x^{11} + 6432 x^{10} + 18802 x^{9} + 304528 x^{8} + 767392 x^{7} - 11659280 x^{6} + 43841512 x^{5} - 36249321 x^{4} - 99384084 x^{3} + 178813720 x^{2} - 493047953 x - 123169547 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50744262454554467455972799262367678441=11^{10}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $227.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{704} a^{14} + \frac{7}{352} a^{13} - \frac{35}{704} a^{12} + \frac{27}{704} a^{11} - \frac{5}{88} a^{10} - \frac{41}{704} a^{9} + \frac{5}{176} a^{8} - \frac{139}{704} a^{7} + \frac{19}{88} a^{6} - \frac{287}{704} a^{5} + \frac{49}{176} a^{4} - \frac{347}{704} a^{3} - \frac{193}{704} a^{2} - \frac{111}{704} a + \frac{335}{704}$, $\frac{1}{251834046335963520950085289316822650310327396780573319746432} a^{15} + \frac{54404212550188488776169066238564551808742290851051658605}{251834046335963520950085289316822650310327396780573319746432} a^{14} - \frac{2869589605910933502520291696303597944099227778829039900689}{251834046335963520950085289316822650310327396780573319746432} a^{13} - \frac{5638079185962639837343500105891370123297208300439529974685}{125917023167981760475042644658411325155163698390286659873216} a^{12} - \frac{19178196632088198312208209202057385625825072513368158612011}{251834046335963520950085289316822650310327396780573319746432} a^{11} - \frac{6507075038061398116301056802274253157010461904320353069129}{251834046335963520950085289316822650310327396780573319746432} a^{10} + \frac{31891004871181346464482400419258641086212329641573144196693}{251834046335963520950085289316822650310327396780573319746432} a^{9} - \frac{1741402466510621828550654552130767296293329034224812976895}{251834046335963520950085289316822650310327396780573319746432} a^{8} - \frac{49401752047737554134648740000690107046451137475898347911517}{251834046335963520950085289316822650310327396780573319746432} a^{7} - \frac{8978056218685431258702951105509367894363620120839462524485}{22894004212360320086371389937892968210029763343688483613312} a^{6} + \frac{571702305106434999727951699301145275253572275602359508779}{251834046335963520950085289316822650310327396780573319746432} a^{5} + \frac{24622662572931024566415457842408061179883822549753788827241}{251834046335963520950085289316822650310327396780573319746432} a^{4} + \frac{50943022852177785090174429907039519685606695136316735881921}{125917023167981760475042644658411325155163698390286659873216} a^{3} + \frac{41164856962106363407589413524119749691120099859637214112313}{125917023167981760475042644658411325155163698390286659873216} a^{2} + \frac{2290577316735455990786695766784304078856264813671553673869}{11447002106180160043185694968946484105014881671844241806656} a + \frac{59666099330473308141011601914917936109411393698735440578857}{251834046335963520950085289316822650310327396780573319746432}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3035826822370 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.647590974205440089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89 | Data not computed | ||||||