Normalized defining polynomial
\( x^{16} - 3 x^{15} + x^{14} + 9 x^{13} - 21 x^{12} + 24 x^{11} - 12 x^{10} - 8 x^{9} + 17 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(499382553081640625\) \(\medspace = 5^{8}\cdot 89\cdot 119851^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}89^{1/2}119851^{1/2}\approx 7302.99219498419$ | ||
Ramified primes: | \(5\), \(89\), \(119851\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{89}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{191}a^{14}+\frac{8}{191}a^{13}+\frac{88}{191}a^{12}+\frac{14}{191}a^{11}+\frac{45}{191}a^{10}-\frac{68}{191}a^{9}-\frac{41}{191}a^{8}-\frac{9}{191}a^{7}-\frac{41}{191}a^{6}-\frac{68}{191}a^{5}+\frac{45}{191}a^{4}+\frac{14}{191}a^{3}+\frac{88}{191}a^{2}+\frac{8}{191}a+\frac{1}{191}$, $\frac{1}{191}a^{15}+\frac{24}{191}a^{13}+\frac{74}{191}a^{12}-\frac{67}{191}a^{11}-\frac{46}{191}a^{10}-\frac{70}{191}a^{9}-\frac{63}{191}a^{8}+\frac{31}{191}a^{7}+\frac{69}{191}a^{6}+\frac{16}{191}a^{5}+\frac{36}{191}a^{4}-\frac{24}{191}a^{3}+\frac{68}{191}a^{2}-\frac{63}{191}a-\frac{8}{191}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{434}{191}a^{15}-\frac{923}{191}a^{14}-\frac{406}{191}a^{13}+\frac{3608}{191}a^{12}-\frac{5901}{191}a^{11}+\frac{4969}{191}a^{10}-\frac{468}{191}a^{9}-\frac{4015}{191}a^{8}+\frac{3425}{191}a^{7}+\frac{175}{191}a^{6}-\frac{5164}{191}a^{5}+\frac{5413}{191}a^{4}-\frac{3665}{191}a^{3}+\frac{622}{191}a^{2}+\frac{609}{191}a-\frac{384}{191}$, $\frac{31}{191}a^{15}-\frac{216}{191}a^{14}+\frac{162}{191}a^{13}+\frac{667}{191}a^{12}-\frac{1472}{191}a^{11}+\frac{1269}{191}a^{10}-\frac{279}{191}a^{9}-\frac{1119}{191}a^{8}+\frac{1568}{191}a^{7}-\frac{83}{191}a^{6}-\frac{1051}{191}a^{5}+\frac{1710}{191}a^{4}-\frac{903}{191}a^{3}+\frac{99}{191}a^{2}+\frac{521}{191}a-\frac{273}{191}$, $\frac{540}{191}a^{15}-\frac{1181}{191}a^{14}-\frac{499}{191}a^{13}+\frac{4601}{191}a^{12}-\frac{7447}{191}a^{11}+\frac{6246}{191}a^{10}-\frac{658}{191}a^{9}-\frac{5272}{191}a^{8}+\frac{4831}{191}a^{7}+\frac{113}{191}a^{6}-\frac{6743}{191}a^{5}+\frac{7360}{191}a^{4}-\frac{4664}{191}a^{3}+\frac{406}{191}a^{2}+\frac{1417}{191}a-\frac{535}{191}$, $\frac{156}{191}a^{15}-\frac{225}{191}a^{14}-\frac{348}{191}a^{13}+\frac{1103}{191}a^{12}-\frac{1187}{191}a^{11}+\frac{653}{191}a^{10}+\frac{369}{191}a^{9}-\frac{985}{191}a^{8}+\frac{176}{191}a^{7}+\frac{507}{191}a^{6}-\frac{1304}{191}a^{5}+\frac{648}{191}a^{4}-\frac{591}{191}a^{3}-\frac{24}{191}a^{2}+\frac{23}{191}a+\frac{55}{191}$, $\frac{550}{191}a^{15}-\frac{1287}{191}a^{14}-\frac{343}{191}a^{13}+\frac{4799}{191}a^{12}-\frac{8264}{191}a^{11}+\frac{7319}{191}a^{10}-\frac{1408}{191}a^{9}-\frac{5185}{191}a^{8}+\frac{5331}{191}a^{7}-\frac{390}{191}a^{6}-\frac{6633}{191}a^{5}+\frac{8107}{191}a^{4}-\frac{5433}{191}a^{3}+\frac{1117}{191}a^{2}+\frac{1085}{191}a-\frac{530}{191}$, $a^{15}-\frac{708}{191}a^{14}+\frac{257}{191}a^{13}+\frac{2254}{191}a^{12}-\frac{4755}{191}a^{11}+\frac{4621}{191}a^{10}-\frac{1516}{191}a^{9}-\frac{2869}{191}a^{8}+\frac{4080}{191}a^{7}-\frac{768}{191}a^{6}-\frac{3235}{191}a^{5}+\frac{5576}{191}a^{4}-\frac{3418}{191}a^{3}+\frac{917}{191}a^{2}+\frac{1021}{191}a-\frac{708}{191}$, $\frac{496}{191}a^{15}-\frac{1165}{191}a^{14}-\frac{281}{191}a^{13}+\frac{4281}{191}a^{12}-\frac{7522}{191}a^{11}+\frac{6889}{191}a^{10}-\frac{1531}{191}a^{9}-\frac{4684}{191}a^{8}+\frac{4851}{191}a^{7}-\frac{332}{191}a^{6}-\frac{6052}{191}a^{5}+\frac{7642}{191}a^{4}-\frac{5294}{191}a^{3}+\frac{1114}{191}a^{2}+\frac{879}{191}a-\frac{549}{191}$, $\frac{100}{191}a^{15}-\frac{246}{191}a^{14}+\frac{50}{191}a^{13}+\frac{841}{191}a^{12}-\frac{1931}{191}a^{11}+\frac{1902}{191}a^{10}-\frac{395}{191}a^{9}-\frac{1180}{191}a^{8}+\frac{1494}{191}a^{7}-\frac{395}{191}a^{6}-\frac{1727}{191}a^{5}+\frac{1889}{191}a^{4}-\frac{1451}{191}a^{3}+\frac{50}{191}a^{2}+\frac{327}{191}a-\frac{282}{191}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 251.294326231 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 251.294326231 \cdot 1}{2\cdot\sqrt{499382553081640625}}\cr\approx \mathstrut & 0.175039150763 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.6.74906875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | $16$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(89\) | $\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
89.2.0.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
89.2.1.1 | $x^{2} + 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.2.0.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
89.2.0.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
89.4.0.1 | $x^{4} + 4 x^{2} + 72 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(119851\) | $\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $2$ | $2$ | $2$ |