Normalized defining polynomial
\( x^{16} - 2 x^{15} - 35 x^{14} + 140 x^{13} + 95 x^{12} - 3201 x^{11} + 13312 x^{10} + 22360 x^{9} - 285830 x^{8} + 81435 x^{7} + 2562842 x^{6} - 1161819 x^{5} - 9809590 x^{4} - 2753750 x^{3} + 6343430 x^{2} + 35305612 x + 35181701 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48763989276665152618408203125=5^{15}\cdot 41^{6}\cdot 18341^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 18341$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} - \frac{17}{41} a^{11} + \frac{17}{41} a^{10} - \frac{12}{41} a^{9} + \frac{8}{41} a^{8} + \frac{14}{41} a^{7} - \frac{11}{41} a^{6} + \frac{10}{41} a^{5} - \frac{7}{41} a^{4} + \frac{13}{41} a^{2} + \frac{18}{41} a - \frac{20}{41}$, $\frac{1}{451} a^{13} + \frac{3}{451} a^{12} - \frac{36}{451} a^{11} - \frac{2}{11} a^{10} - \frac{150}{451} a^{9} - \frac{72}{451} a^{8} - \frac{100}{451} a^{7} + \frac{200}{451} a^{6} + \frac{193}{451} a^{5} - \frac{17}{451} a^{4} - \frac{151}{451} a^{3} - \frac{50}{451} a^{2} + \frac{217}{451} a + \frac{133}{451}$, $\frac{1}{451} a^{14} - \frac{1}{451} a^{12} + \frac{180}{451} a^{11} - \frac{58}{451} a^{10} - \frac{150}{451} a^{9} + \frac{17}{451} a^{8} + \frac{214}{451} a^{7} + \frac{1}{41} a^{6} - \frac{156}{451} a^{5} + \frac{43}{451} a^{4} - \frac{48}{451} a^{3} + \frac{37}{451} a^{2} - \frac{177}{451} a + \frac{74}{451}$, $\frac{1}{96369274152460342808809446769170520420045337731} a^{15} - \frac{1047429188840985139856415706826315300317348}{2350470101279520556312425530955378546830374091} a^{14} + \frac{73885030168100454158903996871350969530965422}{96369274152460342808809446769170520420045337731} a^{13} + \frac{430252114499816687868967158102069337457488455}{96369274152460342808809446769170520420045337731} a^{12} - \frac{1740968234593827830961033302656860929957774600}{8760843104769122073528131524470047310913212521} a^{11} + \frac{47332795995969008347663161773369067116880545903}{96369274152460342808809446769170520420045337731} a^{10} - \frac{37911257024389313571456297849691808351042635233}{96369274152460342808809446769170520420045337731} a^{9} + \frac{14704270466334110952122293919470750662894559582}{96369274152460342808809446769170520420045337731} a^{8} + \frac{5022325916020578807141603740670341312794682773}{96369274152460342808809446769170520420045337731} a^{7} - \frac{34507051783698421674356220998710279058710821584}{96369274152460342808809446769170520420045337731} a^{6} + \frac{8383105543488629125551097134146442766239319921}{96369274152460342808809446769170520420045337731} a^{5} - \frac{48180794563456065822887104869523627483366758751}{96369274152460342808809446769170520420045337731} a^{4} + \frac{44354135776139295309570603458446565348169508314}{96369274152460342808809446769170520420045337731} a^{3} + \frac{1282316192278448926989019666759742664128238328}{8760843104769122073528131524470047310913212521} a^{2} - \frac{32958053404234444865931553679924367359440257416}{96369274152460342808809446769170520420045337731} a - \frac{35747644249411588400067319688142249172956867495}{96369274152460342808809446769170520420045337731}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 147276086.207 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1113 |
| Character table for t16n1113 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.5125.1, 8.4.131328125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 18341 | Data not computed | ||||||