Properties

Label 16.4.48630173006...0000.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{8}\cdot 3^{12}\cdot 5^{12}\cdot 11^{4}$
Root discriminant $19.63$
Ramified primes $2, 3, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2.C_2^5.C_2$ (as 16T610)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, 10, -5, -45, 51, 82, -246, 252, -143, -17, 139, -139, 99, -51, 17, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 17*x^14 - 51*x^13 + 99*x^12 - 139*x^11 + 139*x^10 - 17*x^9 - 143*x^8 + 252*x^7 - 246*x^6 + 82*x^5 + 51*x^4 - 45*x^3 - 5*x^2 + 10*x - 5)
 
gp: K = bnfinit(x^16 - 5*x^15 + 17*x^14 - 51*x^13 + 99*x^12 - 139*x^11 + 139*x^10 - 17*x^9 - 143*x^8 + 252*x^7 - 246*x^6 + 82*x^5 + 51*x^4 - 45*x^3 - 5*x^2 + 10*x - 5, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 17 x^{14} - 51 x^{13} + 99 x^{12} - 139 x^{11} + 139 x^{10} - 17 x^{9} - 143 x^{8} + 252 x^{7} - 246 x^{6} + 82 x^{5} + 51 x^{4} - 45 x^{3} - 5 x^{2} + 10 x - 5 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(486301730062500000000=2^{8}\cdot 3^{12}\cdot 5^{12}\cdot 11^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4}$, $\frac{1}{2225} a^{14} + \frac{69}{2225} a^{13} + \frac{169}{2225} a^{12} - \frac{71}{2225} a^{11} + \frac{894}{2225} a^{10} - \frac{549}{2225} a^{9} + \frac{662}{2225} a^{8} + \frac{817}{2225} a^{7} + \frac{342}{2225} a^{6} + \frac{942}{2225} a^{5} - \frac{556}{2225} a^{4} + \frac{74}{445} a^{3} + \frac{121}{445} a^{2} + \frac{129}{445} a + \frac{181}{445}$, $\frac{1}{1875984275} a^{15} - \frac{73609}{375196855} a^{14} + \frac{8374023}{1875984275} a^{13} - \frac{166634592}{1875984275} a^{12} - \frac{124381592}{1875984275} a^{11} - \frac{136498599}{375196855} a^{10} + \frac{554399968}{1875984275} a^{9} - \frac{597259616}{1875984275} a^{8} + \frac{915853614}{1875984275} a^{7} + \frac{47639274}{170544025} a^{6} + \frac{34967291}{1875984275} a^{5} - \frac{153496286}{1875984275} a^{4} - \frac{5942903}{75039371} a^{3} - \frac{34044247}{75039371} a^{2} + \frac{328562}{75039371} a + \frac{88772931}{375196855}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 18262.28001 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^5.C_2$ (as 16T610):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $C_2^2.C_2^5.C_2$
Character table for $C_2^2.C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 4.2.1375.1, 4.2.2475.1, 8.4.153140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.5$x^{8} + 2 x^{7} + 8 x^{2} + 16$$2$$4$$8$$C_8:C_2$$[2, 2]^{4}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
3Data not computed
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$