Normalized defining polynomial
\( x^{16} - x^{15} + x^{14} + 16 x^{13} + 18 x^{12} - 35 x^{11} + 188 x^{10} + 84 x^{9} + 171 x^{8} - 188 x^{7} - 356 x^{6} - 239 x^{5} - 152 x^{4} - 86 x^{3} - 33 x^{2} - x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4809039104363049933169=13^{4}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{17} a^{8} + \frac{8}{17} a^{7} - \frac{6}{17} a^{6} + \frac{5}{17} a^{5} + \frac{2}{17} a^{4} + \frac{5}{17} a^{3} - \frac{6}{17} a^{2} + \frac{8}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{9} - \frac{2}{17} a^{7} + \frac{2}{17} a^{6} - \frac{4}{17} a^{5} + \frac{6}{17} a^{4} + \frac{5}{17} a^{3} + \frac{5}{17} a^{2} + \frac{5}{17} a - \frac{8}{17}$, $\frac{1}{17} a^{10} + \frac{1}{17} a^{7} + \frac{1}{17} a^{6} - \frac{1}{17} a^{5} - \frac{8}{17} a^{4} - \frac{2}{17} a^{3} - \frac{7}{17} a^{2} + \frac{8}{17} a + \frac{2}{17}$, $\frac{1}{17} a^{11} - \frac{7}{17} a^{7} + \frac{5}{17} a^{6} + \frac{4}{17} a^{5} - \frac{4}{17} a^{4} + \frac{5}{17} a^{3} - \frac{3}{17} a^{2} - \frac{6}{17} a - \frac{1}{17}$, $\frac{1}{68} a^{12} - \frac{1}{34} a^{11} + \frac{1}{68} a^{9} - \frac{3}{17} a^{7} - \frac{29}{68} a^{6} + \frac{1}{34} a^{5} + \frac{4}{17} a^{4} + \frac{27}{68} a^{3} + \frac{7}{34} a^{2} + \frac{1}{17} a - \frac{33}{68}$, $\frac{1}{68} a^{13} + \frac{1}{68} a^{10} - \frac{1}{34} a^{9} + \frac{23}{68} a^{7} + \frac{5}{17} a^{6} - \frac{6}{17} a^{5} - \frac{25}{68} a^{4} - \frac{2}{17} a^{3} - \frac{1}{17} a^{2} + \frac{27}{68} a - \frac{13}{34}$, $\frac{1}{68} a^{14} + \frac{1}{68} a^{11} - \frac{1}{34} a^{10} - \frac{1}{68} a^{8} + \frac{8}{17} a^{7} - \frac{4}{17} a^{6} - \frac{9}{68} a^{5} + \frac{3}{17} a^{4} + \frac{3}{17} a^{3} - \frac{33}{68} a^{2} - \frac{7}{34} a - \frac{6}{17}$, $\frac{1}{1496018836} a^{15} - \frac{3418223}{748009418} a^{14} - \frac{5379343}{1496018836} a^{13} + \frac{7523559}{1496018836} a^{12} - \frac{3927567}{374004709} a^{11} + \frac{22840897}{1496018836} a^{10} + \frac{37961951}{1496018836} a^{9} + \frac{1753915}{748009418} a^{8} - \frac{300928085}{1496018836} a^{7} - \frac{248623431}{1496018836} a^{6} - \frac{133382417}{748009418} a^{5} - \frac{13557109}{88001108} a^{4} - \frac{183367963}{1496018836} a^{3} - \frac{7764800}{28769593} a^{2} - \frac{395794497}{1496018836} a - \frac{11588536}{374004709}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23524.4667486 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.5334402749.1 x2, 8.4.4079249161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |