Normalized defining polynomial
\( x^{16} - 6 x^{15} + 4 x^{14} - 11 x^{13} + 149 x^{12} - 304 x^{11} + 2763 x^{10} - 8933 x^{9} - 9069 x^{8} + 121490 x^{7} - 191977 x^{6} - 276618 x^{5} + 198189 x^{4} - 324980 x^{3} + 27250 x^{2} + 398022 x + 660911 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46370927160987469302001953125=5^{12}\cdot 11^{6}\cdot 101^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{11} + \frac{2}{11} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} + \frac{4}{11} a^{7} + \frac{5}{11} a^{6} - \frac{2}{11} a^{5} - \frac{2}{11} a^{4} + \frac{4}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{11} + \frac{1}{11} a^{10} + \frac{5}{11} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{4}{11} a^{5} + \frac{2}{11} a^{4} + \frac{3}{11} a^{3} + \frac{5}{11} a^{2} - \frac{2}{11} a + \frac{3}{11}$, $\frac{1}{33} a^{14} + \frac{1}{33} a^{13} + \frac{14}{33} a^{11} + \frac{10}{33} a^{10} - \frac{16}{33} a^{9} - \frac{3}{11} a^{8} - \frac{1}{11} a^{7} - \frac{2}{11} a^{6} + \frac{1}{3} a^{5} + \frac{7}{33} a^{4} + \frac{5}{11} a^{3} + \frac{4}{33} a^{2} - \frac{16}{33} a - \frac{1}{3}$, $\frac{1}{250803720247442443399919726301228727950194613177} a^{15} + \frac{83788795663665880344961758742096012451730296}{83601240082480814466639908767076242650064871059} a^{14} + \frac{11215777219666183922288083670709890636708859674}{250803720247442443399919726301228727950194613177} a^{13} + \frac{9744988892821343493645987875677184669541135149}{250803720247442443399919726301228727950194613177} a^{12} - \frac{82866115003968030025007933012085573379854094609}{250803720247442443399919726301228727950194613177} a^{11} + \frac{92715776381467906465265191361000861335201594096}{250803720247442443399919726301228727950194613177} a^{10} - \frac{2877133334357844832806586968281473778591385890}{250803720247442443399919726301228727950194613177} a^{9} + \frac{22653533505751639789348057511809866888271188441}{83601240082480814466639908767076242650064871059} a^{8} + \frac{32452565510383434697323743039460845043691970806}{83601240082480814466639908767076242650064871059} a^{7} + \frac{14914781922692332351996587280539207090966908828}{250803720247442443399919726301228727950194613177} a^{6} - \frac{86365029423370728862544815589495058235758232954}{250803720247442443399919726301228727950194613177} a^{5} + \frac{60494516959489098232734500290565414354603016125}{250803720247442443399919726301228727950194613177} a^{4} + \frac{119439096844715373602850295698375699704217440455}{250803720247442443399919726301228727950194613177} a^{3} + \frac{23464968413410584481550770018763466430349615815}{250803720247442443399919726301228727950194613177} a^{2} - \frac{89429573532644544792761694136572136097040190618}{250803720247442443399919726301228727950194613177} a - \frac{5739652558847538921901547795605545293239951067}{22800338204312949399992702391020793450017692107}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43974312.8612 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 88 conjugacy class representatives for t16n1574 are not computed |
| Character table for t16n1574 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 8.4.1947912828125.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $16$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.4.3.3 | $x^{4} + 202$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.0.1 | $x^{4} - x + 12$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |