Normalized defining polynomial
\( x^{16} - 8x^{14} + 12x^{12} + 8x^{10} - 90x^{8} + 8x^{6} + 12x^{4} - 8x^{2} + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(4611686018427387904\)
\(\medspace = 2^{62}\)
|
| |
| Root discriminant: | \(14.67\) |
| |
| Galois root discriminant: | $2^{63/16}\approx 15.32165249117718$ | ||
| Ramified primes: |
\(2\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}+\frac{1}{4}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{4}+\frac{1}{8}$, $\frac{1}{16}a^{9}-\frac{1}{16}a^{8}-\frac{1}{8}a^{5}+\frac{1}{8}a^{4}-\frac{7}{16}a+\frac{7}{16}$, $\frac{1}{16}a^{10}-\frac{1}{16}a^{8}-\frac{1}{8}a^{6}+\frac{1}{8}a^{4}-\frac{7}{16}a^{2}+\frac{7}{16}$, $\frac{1}{32}a^{11}-\frac{1}{32}a^{10}-\frac{1}{32}a^{9}+\frac{1}{32}a^{8}-\frac{1}{16}a^{7}+\frac{1}{16}a^{6}-\frac{3}{16}a^{5}+\frac{3}{16}a^{4}-\frac{7}{32}a^{3}+\frac{7}{32}a^{2}+\frac{15}{32}a-\frac{15}{32}$, $\frac{1}{32}a^{12}+\frac{1}{32}a^{8}+\frac{3}{32}a^{4}-\frac{5}{32}$, $\frac{1}{32}a^{13}-\frac{1}{32}a^{9}-\frac{1}{16}a^{8}+\frac{7}{32}a^{5}+\frac{1}{8}a^{4}+\frac{9}{32}a+\frac{7}{16}$, $\frac{1}{64}a^{14}-\frac{1}{64}a^{12}+\frac{1}{64}a^{10}-\frac{1}{64}a^{8}+\frac{3}{64}a^{6}-\frac{3}{64}a^{4}+\frac{27}{64}a^{2}-\frac{27}{64}$, $\frac{1}{64}a^{15}-\frac{1}{64}a^{13}-\frac{1}{64}a^{11}-\frac{1}{32}a^{10}+\frac{1}{64}a^{9}+\frac{1}{32}a^{8}+\frac{7}{64}a^{7}+\frac{1}{16}a^{6}+\frac{9}{64}a^{5}+\frac{3}{16}a^{4}+\frac{9}{64}a^{3}-\frac{9}{32}a^{2}-\frac{25}{64}a+\frac{1}{32}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{31}{64}a^{15}-\frac{235}{64}a^{13}+\frac{271}{64}a^{11}+\frac{381}{64}a^{9}-\frac{2659}{64}a^{7}-\frac{881}{64}a^{5}+\frac{213}{64}a^{3}-\frac{129}{64}a$, $\frac{3}{8}a^{15}-\frac{49}{16}a^{13}+\frac{79}{16}a^{11}+\frac{11}{4}a^{9}-35a^{7}+\frac{131}{16}a^{5}+\frac{147}{16}a^{3}-\frac{27}{8}a$, $\frac{9}{64}a^{15}-\frac{63}{64}a^{13}+\frac{37}{64}a^{11}+\frac{173}{64}a^{9}-\frac{733}{64}a^{7}-\frac{725}{64}a^{5}+\frac{111}{64}a^{3}-\frac{89}{64}a$, $\frac{45}{64}a^{15}-\frac{7}{32}a^{14}-\frac{349}{64}a^{13}+\frac{57}{32}a^{12}+\frac{455}{64}a^{11}-\frac{23}{8}a^{10}+\frac{469}{64}a^{9}-\frac{11}{8}a^{8}-\frac{3933}{64}a^{7}+\frac{637}{32}a^{6}-\frac{603}{64}a^{5}-\frac{139}{32}a^{4}+\frac{377}{64}a^{3}-\frac{41}{16}a^{2}-\frac{269}{64}a+\frac{19}{16}$, $\frac{45}{64}a^{15}+\frac{11}{64}a^{14}-\frac{349}{64}a^{13}-\frac{85}{64}a^{12}+\frac{455}{64}a^{11}+\frac{109}{64}a^{10}+\frac{469}{64}a^{9}+\frac{117}{64}a^{8}-\frac{3933}{64}a^{7}-\frac{963}{64}a^{6}-\frac{603}{64}a^{5}-\frac{163}{64}a^{4}+\frac{377}{64}a^{3}+\frac{91}{64}a^{2}-\frac{269}{64}a-\frac{45}{64}$, $a$, $\frac{45}{64}a^{15}-\frac{11}{64}a^{14}-\frac{349}{64}a^{13}+\frac{85}{64}a^{12}+\frac{455}{64}a^{11}-\frac{109}{64}a^{10}+\frac{469}{64}a^{9}-\frac{117}{64}a^{8}-\frac{3933}{64}a^{7}+\frac{963}{64}a^{6}-\frac{603}{64}a^{5}+\frac{163}{64}a^{4}+\frac{377}{64}a^{3}-\frac{91}{64}a^{2}-\frac{269}{64}a+\frac{45}{64}$, $\frac{27}{64}a^{15}+\frac{1}{16}a^{14}-\frac{205}{64}a^{13}-\frac{15}{32}a^{12}+\frac{237}{64}a^{11}+\frac{17}{32}a^{10}+\frac{341}{64}a^{9}+\frac{5}{8}a^{8}-\frac{2339}{64}a^{7}-5a^{6}-\frac{747}{64}a^{5}-\frac{67}{32}a^{4}+\frac{331}{64}a^{3}-\frac{59}{32}a^{2}-\frac{173}{64}a-\frac{5}{16}$, $\frac{13}{64}a^{15}-\frac{9}{64}a^{14}-\frac{97}{64}a^{13}+\frac{75}{64}a^{12}+\frac{103}{64}a^{11}-\frac{131}{64}a^{10}+\frac{165}{64}a^{9}-\frac{43}{64}a^{8}-\frac{1085}{64}a^{7}+\frac{841}{64}a^{6}-\frac{495}{64}a^{5}-\frac{339}{64}a^{4}-\frac{71}{64}a^{3}-\frac{173}{64}a^{2}-\frac{69}{64}a+\frac{99}{64}$
|
| |
| Regulator: | \( 1482.43828312 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 1482.43828312 \cdot 1}{2\cdot\sqrt{4611686018427387904}}\cr\approx \mathstrut & 0.339794193634 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.1024.1, \(\Q(\zeta_{16})^+\), 4.2.2048.1, 8.2.268435456.2, 8.2.268435456.1, 8.4.67108864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.0.4611686018427387904.4 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.62l1.21 | $x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{10} + 8 x^{6} + 16 x^{3} + 2$ | $16$ | $1$ | $62$ | 16T26 | $$[2, 3, \frac{7}{2}, 4, \frac{9}{2}]$$ |