Normalized defining polynomial
\( x^{16} + 23 x^{14} + 110 x^{12} + 4736 x^{10} + 33057 x^{8} - 138943 x^{6} - 447367 x^{4} - 187795 x^{2} + 279841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43690605516556003276152578767301401=29^{14}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{14} a^{8} - \frac{1}{2} a^{7} + \frac{3}{7} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{14} a^{2} - \frac{1}{2} a - \frac{1}{14}$, $\frac{1}{14} a^{9} - \frac{1}{14} a^{7} - \frac{1}{2} a^{5} - \frac{3}{7} a^{3} + \frac{3}{7} a - \frac{1}{2}$, $\frac{1}{14} a^{10} - \frac{1}{2} a^{7} - \frac{1}{14} a^{6} + \frac{1}{14} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{14}$, $\frac{1}{14} a^{11} + \frac{3}{7} a^{7} + \frac{1}{14} a^{5} - \frac{1}{2} a^{2} + \frac{3}{7} a - \frac{1}{2}$, $\frac{1}{14} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{3}{7}$, $\frac{1}{322} a^{13} - \frac{5}{322} a^{9} - \frac{1}{161} a^{7} - \frac{9}{46} a^{5} - \frac{1}{2} a^{4} - \frac{3}{7} a^{3} - \frac{1}{2} a^{2} + \frac{72}{161} a - \frac{1}{2}$, $\frac{1}{6370826552163129854} a^{14} + \frac{4110203316431998}{138496229394850649} a^{12} + \frac{211872211252646641}{6370826552163129854} a^{10} - \frac{1969037306670968}{455059039440223561} a^{8} - \frac{602987574699193373}{6370826552163129854} a^{6} - \frac{1}{2} a^{5} - \frac{18083926000523935}{138496229394850649} a^{4} - \frac{1}{2} a^{3} + \frac{949849553987762809}{3185413276081564927} a^{2} - \frac{1}{2} a + \frac{1604688979976385}{6021575191080463}$, $\frac{1}{146529010699751986642} a^{15} + \frac{4110203316431998}{3185413276081564927} a^{13} - \frac{3428600104269141847}{146529010699751986642} a^{11} - \frac{131985905718163414}{10466357907125141903} a^{9} - \frac{58850544623047809181}{146529010699751986642} a^{7} - \frac{1}{2} a^{6} + \frac{1564730124226340625}{3185413276081564927} a^{5} - \frac{1}{2} a^{4} + \frac{9595971303352010468}{73264505349875993321} a^{3} - \frac{1}{2} a^{2} - \frac{53449712767044991}{138496229394850649} a$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30374182208.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.84898109.1, 4.2.49619.1, 4.2.1438951.1, 8.4.209022978441500549.1 x2, 8.4.7207688911775881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| $59$ | 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |